Skip to main content

Advertisement

Log in

Real-Time US-18FDG-PET/CT Image Fusion for Guidance of Thermal Ablation of 18FDG-PET-Positive Liver Metastases: The Added Value of Contrast Enhancement

  • Clinical Investigation
  • Interventional Oncology
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the feasibility of US-18FDG-PET/CT fusion-guided microwave ablation of liver metastases either poorly visible or totally undetectable with US, CEUS and CT, but visualized by PET imaging.

Materials and Methods

Twenty-three patients with 58 liver metastases underwent microwave ablation guided by image fusion system that combines US with 18FDG-PET/CT images. In 28/58 tumors, 18FDG-PET/CT with contrast medium (PET/CECT) was used. The registration technical feasibility, registration time, rates of correct targeting, technical success at 24 h, final result at 1 year and complications were analyzed and compared between the PET/CT and PET/CECT groups.

Results

Registration was successfully performed in all cases with a mean time of 7.8 + 1.7 min (mean + standard deviation), (4.6 + 1.5 min for PET/CECT group versus 10.9 + 1.8 min for PET/CT group, P < 0.01). In total, 46/58 (79.3%) tumors were correctly targeted, while 3/28 (10.7%) and 9/30 (30%) were incorrectly targeted in PET/CT and PET/CECT group, respectively (P < 0.05). Complete ablation was obtained at 24 h in 70.0% of cases (n = 40 tumors), 23/28 (82.1%) in the PET/CECT group and 17/30 (56.7%) in the PET/CT group (P < 0.037). Fourteen tumors underwent local retreatment (11 ablations, 2 with resection and 1 with stereotactic body radiation therapy), while 4 tumors could not be retreated because of distant disease progression and underwent systemic therapy. Finally, 54/58 (93.1%) tumors were completely treated at 1 year. One major complication occurred, a gastrointestinal hemorrhage which required surgical repair.

Conclusions

Percutaneous ablation of 18FDG-PET-positive liver metastases using fusion imaging of real-time US and pre-acquired 18FDG-PET/CT images is feasible, safe and effective. Contrast-enhanced PET/CT improves overall ablation accuracy and shortens procedural duration time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CECT:

Contrast-enhanced computed tomography

CEUS:

Contrast-enhanced ultrasound

CT:

Computed tomography

18FDG-PET:

18Fluorodeoxyglucose positron emission tomography

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

US:

Ultrasound

SBRT:

Stereotactic body radiation therapy

References

  1. Solbiati L, Ahmed M, Cova L, et al. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology. 2012;265:958–68. https://doi.org/10.1148/radiol.12111851.

    Article  PubMed  Google Scholar 

  2. Mauri G, Cova L, De Beni S, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. 2015;38:143–51. https://doi.org/10.1007/s00270-014-0897-y.

    Article  PubMed  Google Scholar 

  3. Dong Y, Wang W-P, Mao F, et al. Application of imaging fusion combining contrast-enhanced ultrasound and magnetic resonance imaging in detection of hepatic cellular carcinomas undetectable by conventional ultrasound. J Gastroenterol Hepatol. 2016;31:822–8. https://doi.org/10.1111/jgh.13202.

    Article  PubMed  Google Scholar 

  4. Liu F-Y, Yu X-L, Liang P, et al. Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol. 2012;81:1455–9. https://doi.org/10.1016/j.ejrad.2011.03.057.

    Article  PubMed  Google Scholar 

  5. Hakime A, Deschamps F, De Carvalho EGM, et al. Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Intervent Radiol. 2011;34:338–44. https://doi.org/10.1007/s00270-010-9979-7.

    Article  PubMed  Google Scholar 

  6. Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography. 2014;33:227–39. https://doi.org/10.14366/usg.14021.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hustinx R, Bénard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med. 2002;32:35–46. https://doi.org/10.1053/snuc.2002.29272.

    Article  PubMed  Google Scholar 

  8. Oriuchi N, Higuchi T, Ishikita T, et al. Present role and future prospects of positron emission tomography in clinical oncology. Cancer Sci. 2006;97:1291–7. https://doi.org/10.1111/j.1349-7006.2006.00341.x.

    Article  CAS  PubMed  Google Scholar 

  9. Pauwels EK, Ribeiro MJ, Stoot JH, et al. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25:317–22.

    Article  CAS  Google Scholar 

  10. Wiering B, Ruers TJM, Krabbe PFM, et al. Comparison of multiphase CT, FDG-PET and intra-operative ultrasound in patients with colorectal liver metastases selected for surgery. Ann Surg Oncol. 2007;14:818–26. https://doi.org/10.1245/s10434-006-9259-6.

    Article  CAS  PubMed  Google Scholar 

  11. Shyn PB. Interventional positron emission tomography/computed tomography: state-of-the-art. Tech Vasc Interv Radiol. 2013;16:182–90. https://doi.org/10.1053/j.tvir.2013.02.014.

    Article  PubMed  Google Scholar 

  12. Tatli S, Gerbaudo VH, Mamede M, et al. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology. 2010;256:305–11. https://doi.org/10.1148/radiol.10090931.

    Article  PubMed  Google Scholar 

  13. Shyn PB, Tatli S, Sahni VA, et al. PET/CT-guided percutaneous liver mass biopsies and ablations: targeting accuracy of a single 20 s breath-hold PET acquisition. Clin Radiol. 2014;69:410–5. https://doi.org/10.1016/j.crad.2013.11.013.

    Article  CAS  PubMed  Google Scholar 

  14. Ryan ER, Thornton R, Sofocleous CT, et al. PET/CT-guided interventions: personnel radiation dose. Cardiovasc Intervent Radiol. 2013;36:1063–7. https://doi.org/10.1007/s00270-012-0515-9.

    Article  PubMed  Google Scholar 

  15. Ryan ER, Sofocleous CT, Schöder H, et al. Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. 2013;268:288–95. https://doi.org/10.1148/radiol.13121462.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tatli S, Gerbaudo VH, Feeley CM, et al. PET/CT-guided percutaneous biopsy of abdominal masses: initial experience. J Vasc Interv Radiol. 2011;22:507–14. https://doi.org/10.1016/j.jvir.2010.12.035.

    Article  PubMed  Google Scholar 

  17. Cornelis F, Petre EN, Vakiani E, et al. Immediate post-ablation FDG-injection and corresponding standardized uptake value is a surrogate biomarker of local tumor progression after thermal ablation of colorectal carcinoma liver metastases. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.117.194506.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cornelis F, Sotirchos V, Violari E, et al. 18F-FDG PET/CT is an immediate imaging biomarker of treatment success after liver metastasis ablation. J Nucl Med. 2016;57:1052–7. https://doi.org/10.2967/jnumed.115.171926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sotirchos VS, Petrovic LM, Gönen M, et al. Colorectal cancer liver metastases: biopsy of the ablation zone and margins can be used to predict oncologic outcome. Radiology. 2016;280:949–59. https://doi.org/10.1148/radiol.2016151005.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klaeser B, Mueller MD, Schmid RA, et al. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol. 2009;19:1780–5. https://doi.org/10.1007/s00330-009-1338-1.

    Article  PubMed  Google Scholar 

  21. Di Mauro E, Solbiati M, De Beni S, et al. Virtual navigator real-time ultrasound fusion imaging with positron emission tomography for liver interventions. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1406–9. https://doi.org/10.1109/EMBC.2013.6609773.

    Article  PubMed  Google Scholar 

  22. Venkatesan AM, Kadoury S, Abi-Jaoudeh N, et al. Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology. 2011;260:848–56. https://doi.org/10.1148/radiol.11101985.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Appelbaum L, Solbiati L, Sosna J, et al. Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol. 2013;20:209–17. https://doi.org/10.1016/j.acra.2012.09.020.

    Article  PubMed  Google Scholar 

  24. Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes–a 10-year experience at a single center. Radiology. 2016;278:601–11. https://doi.org/10.1148/radiol.2015142489.

    Article  PubMed  Google Scholar 

  25. Shady W, Petre EN, Do KG, et al. Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control. J Vasc Interv Radiol. 2018;29(268–275):e1. https://doi.org/10.1016/j.jvir.2017.08.021.

    Article  Google Scholar 

  26. Calandri M, Yamashita S, Gazzera C, et al. Ablation of colorectal liver metastasis: interaction of ablation margins and RAS mutation profiling on local tumour progression-free survival. Eur Radiol. 2018;28:2727–34. https://doi.org/10.1007/s00330-017-5273-2.

    Article  PubMed  Google Scholar 

  27. Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update. Radiology. 2014;273:241–60. https://doi.org/10.1148/radiol.14132958.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Filippiadis DK, Binkert C, Pellerin O, et al. Cirse quality assurance document and standards for classification of complications: the cirse classification system. Cardiovasc Intervent Radiol. 2017;40:1141–6. https://doi.org/10.1007/s00270-017-1703-4.

    Article  CAS  PubMed  Google Scholar 

  29. Mauri G, Cova L, Tondolo T, et al. Percutaneous laser ablation of metastatic lymph nodes in the neck from papillary thyroid carcinoma: preliminary results. J Clin Endocrinol Metab. 2013;98:E1203–7. https://doi.org/10.1210/jc.2013-1140.

    Article  CAS  PubMed  Google Scholar 

  30. Gadaleta CD, Solbiati L, Mattioli V, et al. Unresectable lung malignancy: combination therapy with segmental pulmonary arterial chemoembolization with drug-eluting microspheres and radiofrequency ablation in 17 patients. Radiology. 2013;267:627–37. https://doi.org/10.1148/radiol.12120198.

    Article  PubMed  Google Scholar 

  31. Hakime A, Yevich S, Tselikas L, et al. Percutaneous thermal ablation with ultrasound guidance. fusion imaging guidance to improve conspicuity of liver metastasis. Cardiovasc Intervent Radiol. 2017;40:721–7. https://doi.org/10.1007/s00270-016-1561-5.

    Article  PubMed  Google Scholar 

  32. Mauri G, Porazzi E, Cova L, et al. Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging. 2014;5:209–16. https://doi.org/10.1007/s13244-014-0315-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Solbiati L, Ierace T, Tonolini M, Cova L. Guidance and monitoring of radiofrequency liver tumor ablation with contrast-enhanced ultrasound. Eur J Radiol. 2004;51(Suppl):S19–23.

    Article  Google Scholar 

  34. Shyn PB, Mauri G, Alencar RO, et al. Percutaneous imaging-guided cryoablation of liver tumors: predicting local progression on 24-hour MRI. AJR Am J Roentgenol. 2014;203:W181–91. https://doi.org/10.2214/AJR.13.10747.

    Article  PubMed  Google Scholar 

  35. Rempp H, Waibel L, Hoffmann R, et al. MR-guided radiofrequency ablation using a wide-bore 1.5-T MR system: clinical results of 213 treated liver lesions. Eur Radiol. 2012;22:1972–82. https://doi.org/10.1007/s00330-012-2438-x.

    Article  PubMed  Google Scholar 

  36. Shady W, Petre EN, Vakiani E, et al. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget. 2017;8:66117–27. https://doi.org/10.18632/oncotarget.19806.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Odisio BC, Yamashita S, Huang SY, et al. Local tumour progression after percutaneous ablation of colorectal liver metastases according to RAS mutation status. Br J Surg. 2017;104:760–8. https://doi.org/10.1002/bjs.10490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mauri.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. Giovanni Mauri received consultancy fee from Elesta Srl, speaker honorarium from Guerbet and travel support from RGG. S. Nahum Goldberg performs unrelated consulting for Angiodynamics and Cosman Instruments.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Consent for publication was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauri, G., Gennaro, N., De Beni, S. et al. Real-Time US-18FDG-PET/CT Image Fusion for Guidance of Thermal Ablation of 18FDG-PET-Positive Liver Metastases: The Added Value of Contrast Enhancement. Cardiovasc Intervent Radiol 42, 60–68 (2019). https://doi.org/10.1007/s00270-018-2082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-2082-1

Keywords

Navigation