Skip to main content
Log in

A Toolbox of Bone Consolidation for the Interventional Radiologist

  • Review
  • Musculoskeletal Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Bone consolidation is increasingly used in the treatment of both benign and malignant bone conditions. Percutaneous vertebroplasty, for example, has been shown to be useful in vertebral compression fractures in the VAPOUR trial which showed its superiority to placebo for pain reduction in the treatment of acute vertebral compressive fractures. Further tools have since been developed, such as kyphoplasty, spinal implants, and even developments in bone cements itself in attempt to improve outcome, such as chemotherapy-loaded cement or cement replacements such as radio-opaque silicon polymer. More importantly, bone fixation and its combination with cement have been increasingly performed to improve outcome. Interventional radiologists must first know the tools available, before they can best plan for their patients. This review article will focus on the tool box available for the modern interventional radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nussbaum DA, Gailloud P, Murphy K. The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol. 2004;15(2 Pt 1):121–6.

    Article  PubMed  Google Scholar 

  2. Arora M, et al. Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop. 2013;4(2):67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Acrylic cement in orthopaedic surgery. By JOHN CHARNLEY, C.B.E., D.Sc., F.R.C.S., Consultant Orthopaedic Surgeon, Centre for Hip Surgery, Wrighton Hospital, near Wigan. 10 × 7 1/2 in. Pp. 131 + vi, with 77 illustrations. 1970. Edinburgh: E. × S. Livingstone Ltd. 60s. British Journal of Surgery, 2005. 57(11): p. 874–874.

  4. Phull SS, et al. Bone cement as a local chemotherapeutic drug delivery carrier in orthopedic oncology: a review. J Bone Oncol. 2021;26: 100345.

    Article  PubMed  Google Scholar 

  5. Bistolfi, A., et al., PMMA-based bone cements and the problem of joint arthroplasty infections: status and new perspectives. Materials (Basel), 2019. 12(23).

  6. Cazzato RL, et al. Percutaneous radiofrequency ablation of painful spinal metastasis: A systematic literature assessment of analgesia and safety. Int J Hyperthermia. 2018;34(8):1272–81.

    Article  PubMed  Google Scholar 

  7. Deschamps F, et al. Cementoplasty of metastases of the proximal femur: is it a safe palliative option? J Vasc Interv Radiol. 2012;23(10):1311–6.

    Article  PubMed  Google Scholar 

  8. Cazzato RL, et al. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: a systematic review. Cardiovasc Intervent Radiol. 2015;38(6):1563–72.

    Article  PubMed  Google Scholar 

  9. Baroud G, et al. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J. 2003;12(4):421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim J-M, et al. Effect of bone cement volume and stiffness on occurrences of adjacent vertebral fractures after vertebroplasty. J Korean Neurosurg Soc. 2012;52(5):435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marcia S, et al. Effectiveness of a bone substitute (CERAMENT™) as an alternative to PMMA in percutaneous vertebroplasty: 1-year follow-up on clinical outcome. Eur Spine J. 2012;21(Suppl 1):S112–8.

    Article  PubMed  Google Scholar 

  12. Blasco J, et al. Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: a 12-month randomized follow-up, controlled trial. J Bone Miner Res. 2012;27(5):1159–66.

    Article  PubMed  Google Scholar 

  13. Hierholzer J, et al. Incidence of symptomatic vertebral fractures in patients after percutaneous vertebroplasty. Cardiovasc Intervent Radiol. 2008;31(6):1178–83.

    Article  PubMed  Google Scholar 

  14. Li Y-A, et al. Subsequent vertebral fracture after vertebroplasty: incidence and analysis of risk factors. Spine. 2012;37(3):179–83.

    Article  CAS  PubMed  Google Scholar 

  15. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol. 2006;27(1):217–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fribourg D, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine. 2004;29(20):2270–6.

    Article  PubMed  Google Scholar 

  17. Tseng YY, et al. Repeated and multiple new vertebral compression fractures after percutaneous transpedicular vertebroplasty. Spine Phila Pa (1976). 2009;34(18):1917–22.

    Article  PubMed  Google Scholar 

  18. Filippiadis DK, et al. Percutaneous vertebroplasty and kyphoplasty: current status, new developments and old controversies. Cardiovasc Intervent Radiol. 2017;40(12):1815–23.

    Article  PubMed  Google Scholar 

  19. Ginebra M-P, et al. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64(12):1090–110.

    Article  CAS  PubMed  Google Scholar 

  20. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. J Control Release. 2006;113(2):102–10.

    Article  CAS  PubMed  Google Scholar 

  21. Şahin, E., Calcium phosphate bone cements, in Cement Based Materials, H.E.-D.M. Saleh and R.O.A. Rahman, Editors. 2018, InTech.

  22. Lim T-H, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine. 2002;27(12):1297–302.

    Article  PubMed  Google Scholar 

  23. Grafe IA, et al. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine. 2008;33(11):1284–90.

    Article  PubMed  Google Scholar 

  24. Espanol M, et al. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009;5(7):2752–62.

    Article  CAS  PubMed  Google Scholar 

  25. Schulte TL, et al. Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades. Eur Spine J. 2013;22(12):2695–701.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gasbarrini A, et al. Elastoplasty as a promising novel technique: vertebral augmentation with an elastic silicone-based polymer. Acta Orthop Traumatol Turc. 2017;51(3):209–14.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bornemann R, et al. Elastoplasty: a silicon polymer as a new filling material for kyphoplasty in comparison to PMMA. Pain Physician. 2016;19(6):E885–92.

    Article  PubMed  Google Scholar 

  28. Perry CR, Pearson RL. Local antibiotic delivery in the treatment of bone and joint infections. Clin Orthop Relat Res. 1991;263:215–26.

    Article  Google Scholar 

  29. Slane J, Gietman B, Squire M, Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin: antibiotic elution from acrylic bone cement. J Orthopaedic Res, 2017.

  30. Morejón Alonso L, et al. Evaluation of acrylic bone cements with single and combined antibiotics: release behavior and <i>in vitro</i> antibacterial effectiveness. Int J Polym Mater Polym Biomater. 2018;67(14):830–8.

    Article  Google Scholar 

  31. Chen L, et al. Fabrication of the antibiotic-releasing gelatin/PMMA bone cement. Colloids Surf, B. 2019;183: 110448.

    Article  CAS  Google Scholar 

  32. Wekwejt M, et al. Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials. 2019;9(8):1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slane J, et al. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater Sci Eng C. 2015;48:188–96.

    Article  CAS  Google Scholar 

  34. Prokopovich P, et al, A novel bone cement impregnated with silver&ndash;tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomed, 2013: 2227

  35. Prokopovich P, et al. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. J Biomed Mater Res B Appl Biomater. 2015;103(2):273–81.

    Article  PubMed  Google Scholar 

  36. Subbiahdoss G, et al. Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied. Acta Biomater. 2009;5(5):1399–404.

    Article  CAS  PubMed  Google Scholar 

  37. Serbetci K, Korkusuz F, Hasirci N. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym Testing. 2004;23(2):145–55.

    Article  CAS  Google Scholar 

  38. Mousa WF, et al. Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials. 2000;21(21):2137–46.

    Article  CAS  PubMed  Google Scholar 

  39. Miola M, et al. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles. Biomed Mater. 2015;10(5): 055014.

    Article  PubMed  Google Scholar 

  40. Miola M, et al. Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Mater Sci Eng C. 2014;43:65–75.

    Article  CAS  Google Scholar 

  41. Miola M, et al. Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. J Mater Sci. 2017;52(9):5133–46.

    Article  CAS  Google Scholar 

  42. Verné E, et al. Antibacterial and bioactive composite bone cements. Curr Mater Sci. 2020;12(2):144–53.

    Article  Google Scholar 

  43. Kim H, et al. The cytotoxic effect of methotrexate loaded bone cement on osteosarcoma cell lines. Int Orthop. 2001;25(6):343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang C, et al. Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head. PLoS ONE. 2014;9(5): e96361.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ozben H. Cisplatin loaded PMMA: mechanical properties, surface analysis and effects on Saos-2 cell culture. Acta Orthop Traumatol Turc. 2013;47(3):184–92.

    Article  PubMed  Google Scholar 

  46. Handal JA, et al. Evaluation of elution and mechanical properties of two injectable chemotherapeutic bone cements. Chemotherapy. 2011;57(3):268–74.

    Article  CAS  PubMed  Google Scholar 

  47. Koto K, et al. Cytotoxic effects of zoledronic acid-loaded hydroxyapatite and bone cement in malignant tumors. Oncol Lett. 2017;14(2):1648–56.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Healey JH, et al. PMMA to stabilize bone and deliver antineoplastic and antiresorptive agents. Clin Orthop Relat Res. 2003;415:S263–75.

    Article  Google Scholar 

  49. Llombart-Blanco R, et al. Local and systemic diffusion of antineoplastic drugs following vertebroplasty using acrylic cement mixed with cisplatin or methotrexate: experimental study in pigs. Eur Spine J. 2017;26(12):3216–24.

    Article  PubMed  Google Scholar 

  50. Handal JA, et al. Method for the physical analysis of drug-bone cement composite. Clin Orthop Relat Res. 2007;459:105–9.

    Article  PubMed  Google Scholar 

  51. Handal JA, et al. Polyethylene glycol improves elution properties of polymethyl methacrylate bone cements. J Surg Res. 2015;194(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  52. Decker, S., et al., Cytotoxic effect of methotrexate and its solvent on osteosarcoma cells in vitro. The Journal of Bone and Joint Surgery. British volume, 1999. 81-B(3): p. 545–551.

  53. Tahara Y, Ishii Y. Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. J Orthop Sci. 2001;6(6):556–65.

    Article  CAS  PubMed  Google Scholar 

  54. Li D, et al. A histological evaluation on osteogenesis and resorption of methotrexate-loaded calcium phosphate cement <i>in vivo</i>. Biomed Mater. 2010;5(2): 025007.

    Article  Google Scholar 

  55. Tsoumakidou G, et al. CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol. 2017;40(3):331–42.

    Article  PubMed  Google Scholar 

  56. Bousson V, et al. Percutaneous vertebral augmentation techniques in osteoporotic and traumatic fractures. Semin Intervent Radiol. 2018;35(4):309–23.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen AT, Cohen DB, Skolasky RL. Impact of nonoperative treatment, vertebroplasty, and kyphoplasty on survival and morbidity after vertebral compression fracture in the medicare population. J Bone Joint Surg. 2013;95(19):1729–36.

    Article  PubMed  Google Scholar 

  58. Edidin AA, et al. Mortality risk for operated and nonoperated vertebral fracture patients in the medicare population. J Bone Miner Res. 2011;26(7):1617–26.

    Article  PubMed  Google Scholar 

  59. Kurup AN, et al. Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation. J Vasc Interv Radiol. 2015;26(4):588–94.

    Article  PubMed  Google Scholar 

  60. Manz D, et al. Vertebral augmentation with spinal implants: third-generation vertebroplasty. Neuroradiology. 2020;62(12):1607–15.

    Article  PubMed  Google Scholar 

  61. Muto M, et al. Percutaneous treatment of vertebral fractures. Sem Musculoskelet Radiol. 2017;21(03):349–56.

    Article  Google Scholar 

  62. Tutton SM, et al. KAST study: the kiva system as a vertebral augmentation treatment—a safety and effectiveness trial. Spine. 2015;40(12):865–75.

    Article  PubMed  Google Scholar 

  63. Noriega DC, et al. Long-term safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study. Osteoporos Int. 2019;30(3):637–45.

    Article  CAS  PubMed  Google Scholar 

  64. Noriega D, et al. A prospective, international, randomized, noninferiority study comparing an implantable titanium vertebral augmentation device versus balloon kyphoplasty in the reduction of vertebral compression fractures (SAKOS study). Spine J. 2019;19(11):1782–95.

    Article  PubMed  Google Scholar 

  65. Otten LA, et al. Comparison of balloon kyphoplasty with the new Kiva® VCF system for the treatment of vertebral compression fractures. Pain Physician. 2013;16(5):E505–12.

    Article  PubMed  Google Scholar 

  66. Krüger A, et al. Height restoration and maintenance after treating unstable osteoporotic vertebral compression fractures by cement augmentation is dependent on the cement volume used. Clin Biomech. 2013;28(7):725–30.

    Article  Google Scholar 

  67. Krüger A, et al. Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: a cadaveric study. Spine J. 2015;15(5):1092–8.

    Article  PubMed  Google Scholar 

  68. Werner CML, et al. Vertebral body stenting versus kyphoplasty for the treatment of osteoporotic vertebral compression fractures: a randomized trial. J Bone Joint Surg. 2013;95(7):577–84.

    Article  PubMed  Google Scholar 

  69. Beall D, et al. Review of vertebral augmentation: an updated meta-analysis of the effectiveness. Int J Spine Surg. 2018;12(3):295–321.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Beaty, F.M.A.S.T.C.J.H., Campbell's Oper Orthopaed. 14 ed. 2020.

  71. Synthes, Synthes Screw Reference Chart. 2002.

  72. Matthias Hansen, R.P. Lag screw technique. AO Surgery Reference 2010 [cited 2023.

  73. Raymond White, M.C. ORIF - Lag screws through protection plate. AO Surgery Reference 2012 [cited 2023.

  74. Moser JE, Kunkel KAR, Gerard PD. Pullout strength of 2.0 mm cancellous and cortical screws in synthetic bone. Vet Surg. 2017;46(8):1110–5.

    Article  PubMed  Google Scholar 

  75. Chapman JR, et al. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng. 1996;118(3):391–8.

    Article  CAS  PubMed  Google Scholar 

  76. Grewal IS, Starr AJ. What’s new in percutaneous pelvis fracture surgery? Orthop Clin North Am. 2020;51(3):317–24.

    Article  PubMed  Google Scholar 

  77. Cornelis FH, et al., Percutaneous screw fixation of pelvic bone metastases using cone-beam computed tomography navigation. Diagnostic and Interventional Imaging, 2022.

  78. Pieske O, et al. CT-guided sacroiliac percutaneous screw placement in unstable posterior pelvic ring injuries: accuracy of screw position, injury reduction and complications in 71 patients with 136 screws. Injury. 2015;46(2):333–9.

    Article  PubMed  Google Scholar 

  79. Templeman D, et al. Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res. 1996;329:194–8.

    Article  Google Scholar 

  80. Strobl FF, et al. Technical and clinical outcome of percutaneous CT fluoroscopy-guided screw placement in unstable injuries of the posterior pelvic ring. Skeletal Radiol. 2014;43(8):1093–100.

    Article  PubMed  Google Scholar 

  81. Gangi A, Buy X. Percutaneous bone tumor management. Semin Intervent Radiol. 2010;27(2):124–36.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lea WB, et al. Pelvis weight-bearing ability after minimally invasive stabilizations for periacetabular lesion. J Orthop Res. 2021;39(10):2124–9.

    Article  PubMed  Google Scholar 

  83. Morris MT, et al. Biomechanical restoration of metastatic cancer-induced peri-acetabular bone defects by ablation-osteoplasty-reinforcement-internal fixation technique (AORIF): To screw or not to screw? Clin Biomech (Bristol, Avon). 2022;92: 105565.

    Article  PubMed  Google Scholar 

  84. Kaya V, et al. Biomechanical and fracture characteristics of different filling and fixation methods applied to various proximal tibial metaphyseal defect sizes in an ovine model. Clin Biomech. 2022;93: 105597.

    Article  Google Scholar 

  85. Yee DKH, et al. Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg. 2020;140(12):1957–64.

    Article  PubMed  Google Scholar 

  86. Suero EM, et al. Biomechanical stability of sacroiliac screw osteosynthesis with and without cement augmentation. Injury. 2021;52(10):2707–11.

    Article  PubMed  Google Scholar 

  87. Collinge CA, Crist BD. Combined percutaneous iliosacral screw fixation with sacroplasty using resorbable calcium phosphate cement for osteoporotic pelvic fractures requiring surgery. J Orthop Trauma. 2016;30(6):e217–22.

    PubMed  Google Scholar 

  88. Höch A, et al. In-screw polymethylmethacrylate-augmented sacroiliac screw for the treatment of fragility fractures of the pelvis: a prospective, observational study with 1-year follow-up. BMC Surg. 2017;17(1):132.

    Article  PubMed  PubMed Central  Google Scholar 

  89. König MA, et al. In-screw cement augmentation for iliosacral screw fixation in posterior ring pathologies with insufficient bone stock. Eur J Trauma Emerg Surg. 2018;44(2):203–10.

    Article  PubMed  Google Scholar 

  90. Wähnert D, Raschke MJ, Fuchs T. Cement augmentation of the navigated iliosacral screw in the treatment of insufficiency fractures of the sacrum: a new method using modified implants. Int Orthop. 2013;37(6):1147–50.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sandmann GH, et al. Balloon guided cement augmentation of iliosacral screws in the treatment of insufficiency fractures of the sacrum - description of a new method and preliminary results. Acta Chir Orthop Traumatol Cech. 2018;85(2):85–8.

    Article  CAS  PubMed  Google Scholar 

  92. Bensoussan S, et al. Percutaneous reinforced cementoplasty using spindles as a palliative option for malignant fractures of the humerus. Diagn Interv Imaging. 2022;103(7):375–7.

    Article  PubMed  Google Scholar 

  93. Chiras J, et al. Interventional radiology in bone metastases. Eur J Cancer Care. 2017;26(6): e12741.

    Article  Google Scholar 

Download references

Funding

The study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanie Betsy Chiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Consent for publication

For this type of study, consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, J.B., Yee, D.K.H. A Toolbox of Bone Consolidation for the Interventional Radiologist. Cardiovasc Intervent Radiol 46, 1447–1457 (2023). https://doi.org/10.1007/s00270-023-03445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-023-03445-7

Keywords

Navigation