Skip to main content
Log in

Hurwicz’s criterion and the equilibria of duopoly models

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we investigate a model of duopolistic competition in an uncertain environment where the attitudes of the firms towards uncertainty are incorporated. In particular, we analyze an extension of a Cournot duopoly in which the firms face a different market demand in each of two scenarios, and make their output decisions before uncertainty is resolved. The way in which firms value the possible outcomes is critical when deciding their strategies. In real-life situations the attitudes that agents exhibit can vary from extreme pessimism to extreme optimism, and it is possible to characterize their behavior according to their degrees of optimism. In this context, we identify the sets of equilibria for the full range of degrees of optimism, and illustrate the results with the analysis of some cases in which the demand functions are linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghassi M, Bertsimas D (2006) Robust game theory. Math Program 107:231–273

    Article  Google Scholar 

  • Bade S (2005) Nash equilibrium in games with incomplete preferences. Econ Theor 26:309–332

    Article  Google Scholar 

  • Caraballo MA, Mármol AM, Monroy L, Buitrago E (2015) Cournot competition under uncertainty. Conservative and optimistic equilibria. Rev Econ Design 19(2):145–165

    Article  Google Scholar 

  • Cournot AA (1838) Recherches sur les principes mathématiques de la théorie des richesses. Hachette, Paris

    Google Scholar 

  • Crespi GP, Radi D, Rocca M (2017) Robust games: theory and application to a Cournot duopoly model. Decis Econ Finance 3:1–22

    Google Scholar 

  • Fanti L, Gori L, Sodini M (2013) Nonlinear dynamics in a Cournot duopoly with different attitudes towards strategic uncertainty. In: Abstract and applied analysis, vol 2013, Article ID 323290. https://doi.org/10.1155/2013/323290

  • Fontini F (2005) Cournot oligopoly under strategic uncertainty with optimistic and pessimistic firms. Metroeconomica 56:318–333

    Article  Google Scholar 

  • Gaspars-Wieloch H (2014a) Modifications of the Hurwicz’s decision rule. CEJOR 22:779–794

    Article  Google Scholar 

  • Gaspars-Wieloch H (2014b) The use of a modification of the Hurwicz’s decision rule in multicriteria decision making under comlplete uncertainty. Bus Manag Educ 12:283–302

    Article  Google Scholar 

  • Gaspars-Wieloch H (2015) On a decision rule supported by a forecasting stage based on the decision maker’s coefficient of optimism. CEJOR 23:579–594

    Article  Google Scholar 

  • Gaspars-Wieloch H (2017) Newsvendor problem under uncertainty: a case of innovate products. CEJOR 25:561–585

    Article  Google Scholar 

  • Hurwicz L (1951) Optimality criteria for decision-making under ignorance. Cowles Commission discussion paper, statistics, no. 370

  • Knight FH (1921) Risk, uncertainty, profit. Hart. Schaffner and Marx; Houghton Mifflin Co., Boston

    Google Scholar 

  • Kreps DM, Scheinkman JA (1983) Quantity precommitment and Bertrand competition yield Cournot outcomes. Bell J Econ 14:326–337

    Article  Google Scholar 

  • Mármol AM, Monroy L, Caraballo MA, Zapata A (2017) Equilibria with vector-valued utilities and preference information. The analysis of a mixed duopoly. Theory Decis 83:365–383

    Article  Google Scholar 

  • Monroy L, Caraballo MA, Mármol AM (2017a) Duopolistic competition with multiple scenarios and different attitudes toward uncertainty. Int Trans Oper Res. https://doi.org/10.1111/itor.12474

    Google Scholar 

  • Monroy L, Caraballo MA, Mármol AM, Zapata A (2017b) Agents with other-regarding preferences in the commons. Metroeconomica 68:947–965

    Article  Google Scholar 

  • Pérez DE, Hernández JG, García MJ, Hernández GJ (2015) Hurwicz method modified and the amplitude model (TAM). In: Delener et al. (ed) GBATA2015 reading book. GBATA, New York, pp 559–566

Download references

Acknowledgements

The research of the authors has been supported by the Spanish Ministry of Economy and Competitiveness, under Project ECO2015-68856-P (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Caraballo.

Appendix

Appendix

Proof Proposition 1

Recall that for each \(\gamma ,\)\(0\le \gamma \le 1\), the Hurwicz function is

$$\begin{aligned} v^i_\gamma (q)=\left\{ \begin{array}{lcl} \gamma u^i_1(q)+(1- \gamma ) u^i_2(q) &{} \text{ if } \, \, q^1+q^2\le \bar{Q}\\ \gamma u^i_2(q)+(1- \gamma ) u^i_1(q)&{} \text{ if } \, \, q^1+q^2 \ge \bar{Q}.\, \\ \end{array} \right. \end{aligned}$$

Equivalently,

$$\begin{aligned} v^i_\gamma (q)=\left\{ \begin{array}{lcl} q^i(\gamma P_1(Q)+(1- \gamma ) P_2(Q)) &{} \text{ if } \, \, q^1+q^2\le \bar{Q}\\ q^i(\gamma P_2(Q)+(1- \gamma ) P_1(Q))&{} \text{ if } \, \, q^1+q^2 \ge \bar{Q}\, \\ \end{array} \right. \end{aligned}$$

a) If \(\gamma \ge \frac{1}{2}\), we will prove that when \(q^1+q^2 \le \bar{Q}\), then \( \gamma u^i_1(q)+(1- \gamma ) u^i_2(q)\ge \gamma u_2^i(q)+(1- {{\gamma }}) u_1^i(q)\), and when \(q^1+q^2 \ge \bar{Q}\), \( \gamma u^i_1(q)+(1- \gamma ) u^i_2(q)\le \gamma u_2^i(q)+(1- {{\gamma }}) u_1^i(q)\). Thus, \(v^i_\gamma (q)=max\{\gamma u^i_1(q)+(1- \gamma ) u^i_2(q), \gamma u_2^i(q)+(1- \gamma ) u_1^i(q)\} \) for any q.

First, note that we can write

\( \gamma P_1(Q)+(1- \gamma ) P_2(Q)= (2 \gamma -1) (P_1(Q)-P_2(Q))+\gamma P_2(Q)+(1- \gamma )P_1(Q).\)

For \(q^1+q^2 \le \bar{Q}\), \(P_1(Q)\ge P_2(Q)\). Since \(\gamma \ge \frac{1}{2}\), \(2\gamma -1\ge 0\), then \((2\gamma -1)(P_1(Q)-P_2(Q)) \ge 0\), and therefore \( \gamma P_1(Q)+(1- \gamma ) P_2(Q)\ge \gamma P_2(Q)+(1- \gamma )P_1(Q)\). Thus \( \gamma u^i_1(q)+(1- \gamma ) u^i_2(q)\ge \gamma u_2^i(q)+(1- {{\gamma }}) u_1^i(q)\).

On the other hand, for \(q^1+q^2 \ge \bar{Q}\), \(P_1(Q)\le P_2(Q)\), and since \((2\gamma -1)(P_1(Q)-P_2(Q)) \le 0, \) then \( \gamma P_1(Q)+(1- \gamma ) P_2(Q) \le \gamma P_2(Q)+(1- \gamma )P_1(Q).\)

Thus, \( \gamma u^i_1(q)+(1- \gamma ) u^i_2(q)\le \gamma u_2^i(q)+(1- {{\gamma }}) u_1^i(q)\), and the result follows.

b) Anagolously, if \(\gamma \le \frac{1}{2}\), then

\( v^i_\gamma (q)=min\{\gamma u^i_1(q)+(1- \gamma ) u^i_2(q), \gamma u_2^i(q)+(1- \gamma ) u_1^i(q)\}\) for any q. \(\square \)

Proof Theorem 1

It follows from the definition that \(q^*\) is an \(H_{\gamma }\)-equilibrium for the game G if and only if \(q^*\) is a Nash equilibrium for the game \(\{(A^i, v^i_\gamma )\}_{i =1,2}\). By applying Proposition 1, for \(\gamma \ge \frac{1}{2} \), \( v^i_\gamma (q)= max\{w^{i\gamma }_1(q),w^{i\gamma }_2(q)\}\), and for \(\gamma \le \frac{1}{2}\), \( v^i_\gamma (q)= min\{w^{i\gamma }_1(q),w^{i\gamma }_2(q)\}\), where \(w^{i\gamma }_1(q)=\gamma u^i_1(q)+(1- \gamma ) u^i_2(q)\), and \(w^{i\gamma }_2(q)= \gamma u_2^i(q)+(1- \gamma ) u_1^i(q)\).

Therefore, it follows that for \(\gamma \ge \frac{1}{2}\), \(q^*\) is an optimistic equilibrium for the game \(G^\gamma =\{(A^i, w^{i\gamma }_1,w^{i\gamma }_2)\}_{i =1,2}, \) and for \(\gamma \le \frac{1}{2}, \, q^*\) is a conservative equilibrium for the game \(G^{\gamma }.\)\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata, A., Caraballo, M.A., Monroy, L. et al. Hurwicz’s criterion and the equilibria of duopoly models. Cent Eur J Oper Res 27, 937–952 (2019). https://doi.org/10.1007/s10100-017-0517-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-017-0517-4

Keywords

JEL Classification

Navigation