Skip to main content
Log in

Authentication in Internet of Things, protocols, attacks, and open issues: a systematic literature review

  • Survey
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) as an emerging technology is based on the idea that smart things can connect to the Internet and exchange the collected data in a peer-to-peer paradigm. Due to its inherent features, IoT can be utilized in real-world scenarios and its expansion can improve human well-being. Internet of things is applied quite closely to humans and transmits serious information such as healthcare information, financial data, and private information through an insecure communication platform. Since almost all tasks are performed with minimal human intervention, and adversary may deploy its nodes among other legitimate elements of IoT, providing an effective mutual authentication is vital. In this Systematic Literature Review, authentication of IoT and its literature are reviewed systematically. In particular, it has endeavored that the collected literature covers the papers conducted from 2018 to 2022. Moreover, this study seeks to provide a comprehensive answer to six important Research Questions in the context of authentication of IoT that often engage the minds of scholars. It is hoped that this survey will be an effective guide for future research by addressing the relevant challenges, analyzing open issues, and providing future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Navas, R.E., Cuppens, F., Boulahia Cuppens, N., Toutain, L., Papadopoulos, G.Z.: MTD, Where Art Thou? A systematic review of moving target defense techniques for IoT. IEEE Internet Things J. 8(10), 7818–7832 (2021). https://doi.org/10.1109/JIOT.2020.3040358

    Article  Google Scholar 

  2. Kumar, V., Malik, N., Singla, J., Jhanjhi, N.Z., Amsaad, F.: Light weight authentication scheme for smart home IoT devices. Dep. Comput. Sci. Eng. 6(3), 37 (2022). https://doi.org/10.3390/cryptography6030037

    Article  Google Scholar 

  3. Tange, K., De Donno, M., Fafoutis, X., Dragoni, N.: A systematic survey of industrial internet of things security: requirements and fog computing opportunities. IEEE Commun. Surv. Tutorials 22(4), 2489–2520 (2020). https://doi.org/10.1109/COMST.2020.3011208

    Article  Google Scholar 

  4. Alsahlani, A.Y.F., Popa, A.: LMAAS-IoT: lightweight multi-factor authentication and authorization scheme for real-time data access in iot cloud-based environment. J. Netw. Comput. Appl. 192, 103177 (2021). https://doi.org/10.1016/J.JNCA.2021.103177

    Article  Google Scholar 

  5. Chang, Z., Meng, Y., Liu, W., Zhu, H., Wang, L.: WiCapose: multi-modal fusion based transparent authentication in mobile environments. J. Inf. Secur. Appl. 66, 103130 (2022). https://doi.org/10.1016/J.JISA.2022.103130

    Article  Google Scholar 

  6. Nandy, T., et al.: Review on security of internet of things authentication mechanism. IEEE Access 7, 151054–151089 (2019). https://doi.org/10.1109/ACCESS.2019.2947723

    Article  Google Scholar 

  7. Ahmim, I., Ghoualmi-Zine, N., Ahmim, A., Ahmim, M.: Security analysis on ‘Three-factor authentication protocol using physical unclonable function for IoV.’ Int. J. Inf. Secur. 21(5), 1019–1026 (2022). https://doi.org/10.1007/s10207-022-00595-6

    Article  Google Scholar 

  8. Ghasemi, F., Babaie, S.: A lightweight secure authentication approach based on stream ciphering for RFID-based Internet of Things. Comput. Electr. Eng. 102, 108288 (2022). https://doi.org/10.1016/j.compeleceng.2022.108288

    Article  Google Scholar 

  9. Sahoo, S.S., et al.: A three-factor-based authentication scheme of 5G wireless sensor networks for IoT system. IEEE Internet Things J. 10(17), 15087–15099 (2023). https://doi.org/10.1109/JIOT.2023.3264565

    Article  Google Scholar 

  10. Lien, C.W., Vhaduri, S.: Challenges and opportunities of biometric user authentication in the age of IoT: a survey. CM Comput. Surv. 56(1), 1–37 (2023). https://doi.org/10.1145/3603705

    Article  Google Scholar 

  11. Abkenar, F.S., Ramezani, P., Iranmanesh, S., Murali, S., Chulerttiyawong, D., Wan, X., Jamalipour, A., Raad, R.: A survey on mobility of edge computing networks in IoT: state- of -the-art, architectures, and challenges. IEEE Commun. Surv. Tutorials 24(4), 2329–2365 (2022)

    Article  Google Scholar 

  12. Al-Awami, S.H., Al-Aty, M.M., Al-Najar, M.F.: Comparison of IoT architectures based on the seven essential characteristics, (2023)

  13. Lombardi, M., Pascale, F., Santaniello, D.: Internet of things: a general overview between architectures, protocols and applications. Inf. 12(2), 1–21 (2021). https://doi.org/10.3390/info12020087

    Article  Google Scholar 

  14. Gharamaleki, M.M., Babaie, S.: A new distributed fault detection method for wireless sensor networks. IEEE Syst. J. 14(4), 4883–4890 (2020). https://doi.org/10.1109/JSYST.2020.2976827

    Article  Google Scholar 

  15. Najafi, Z., Babaie, S.: A lightweight hierarchical key management approach for internet of things. J. Inf. Secur. Appl. 75, 103485 (2023). https://doi.org/10.1016/J.JISA.2023.103485

    Article  Google Scholar 

  16. Afrashteh, M., Babaie, S.: A route segmented broadcast protocol based on RFID for emergency message dissemination in vehicular Ad-hoc Networks. IEEE Trans. Veh. Technol. (2020). https://doi.org/10.1109/TVT.2020.3041754

    Article  Google Scholar 

  17. Almulhim, M., Islam, N., Zaman, N.: A lightweight and secure authentication scheme for IoT based e-health applications. Int. J. Comput. Sci. Netw. Secur. 19(1), 107–120 (2019)

    Google Scholar 

  18. Su, Y., Zhang, X., Qin, J., Ma, J.: Efficient and flexible multiauthority attribute-based authentication for IoT devices. IEEE Internet things J. 10(15), 13945–13958 (2023)

    Article  Google Scholar 

  19. Al-Naji, F.H., Zagrouba, R.: A survey on continuous authentication methods in Internet of Things environment. Comput. Commun. 163(June), 109–133 (2020). https://doi.org/10.1016/j.comcom.2020.09.006

    Article  Google Scholar 

  20. Alshawish, I., Al-Haj, A.: An efficient mutual authentication scheme for IoT systems. J. Supercomput. 78(14), 16056–16087 (2022). https://doi.org/10.1007/s11227-022-04520-5

    Article  Google Scholar 

  21. Masud, M., Gaba, G.S., Kumar, P., Gurtov, A.: A user-centric privacy-preserving authentication protocol for IoT-Am I environments. Comput. Commun. 196, 45–54 (2022). https://doi.org/10.1016/J.COMCOM.2022.09.021

    Article  Google Scholar 

  22. Shiri, A., Babaie, S., Hasan-Zadeh, J.: New active caching method to guarantee desired communication reliability in wireless sensor networks. J. Basic Appl. Sci. Res. 2(5), 4880–4885 (2012)

    Google Scholar 

  23. Deebak, B.D., Al-Turjman, F., Aloqaily, M., Alfandi, O.: An authentic-based privacy preservation protocol for smart e-healthcare systems in IoT. IEEE Access 7, 135632–135649 (2019). https://doi.org/10.1109/ACCESS.2019.2941575

    Article  Google Scholar 

  24. Wazid, M., Das, A.K., Odelu, V., Kumar, N., Conti, M., Jo, M.: Design of secure user authenticated key management protocol for generic IoT networks. IEEE Internet Things J. 5(1), 269–282 (2018). https://doi.org/10.1109/JIOT.2017.2780232

    Article  Google Scholar 

  25. Ramzan, M., Habib, M., Khan, S.A.: Secure and efficient privacy protection system for medical records. Sustain. Comput. Inform. Syst. 35, 100717 (2022). https://doi.org/10.1016/J.SUSCOM.2022.100717

    Article  Google Scholar 

  26. Hajian, R., Erfani, S.H., Kumari, S.: A lightweight authentication and key agreement protocol for heterogeneous IoT with special attention to sensing devices and gateway. J. Supercomput. 78(15), 16678–16720 (2022). https://doi.org/10.1007/s11227-022-04464-w

    Article  Google Scholar 

  27. Seddiqi, H., Babaie, S.: A new protection-based approach for link failure management of software-defined networks. IEEE Trans. Netw. Sci. Eng. (2021). https://doi.org/10.1109/TNSE.2021.3110315

    Article  Google Scholar 

  28. Babaie, S.: Biometric authentication: an efficient option for Internet of Things applications during the COVID-19 pandemic. Acta Sci. Comput. Sci. 2(10), 1–2 (2020)

    Google Scholar 

  29. Ebrahimpour, E., Babaie, S.: A Lightweight authentication approach based on linear feedback shift register and majority function for internet of things. Peer-to-Peer Netw Appl (2023). https://doi.org/10.1007/s12083-023-01498-6

    Article  Google Scholar 

  30. Roy, P.K., Sahu, P., Bhattacharya, A.: FastHand: a fast handover authentication protocol for densely deployed small-cell networks. J. Netw. Comput. Appl. 205, 103435 (2022). https://doi.org/10.1016/J.JNCA.2022.103435

    Article  Google Scholar 

  31. Abdussami, M., Amin, R., Vollala, S.: LASSI: a lightweight authenticated key agreement protocol for fog-enabled IoT deployment. Int. J. Inf. Secur. 21(6), 1373–1387 (2022). https://doi.org/10.1007/s10207-022-00619-1

    Article  Google Scholar 

  32. Yin, X., Wang, S., Zhu, Y., Hu, J., Member, S.: A novel length-flexible lightweight cancelable fingerprint template for privacy-preserving authentication systems in resource-constrained IoT applications. IEEE Internet Things J. 10(1), 877–892 (2023). https://doi.org/10.1109/JIOT.2022.3204246

    Article  Google Scholar 

  33. Sadhukhan, D., Ray, S., Biswas, G.P., Khan, M.K., Dasgupta, M.: A lightweight remote user authentication scheme for IoT communication using elliptic curve cryptography. J. Supercomput. 77(2), 1114–1151 (2021). https://doi.org/10.1007/s11227-020-03318-7

    Article  Google Scholar 

  34. Ryu, R., Yeom, S., Kim, S.H., Herbert, D.: Continuous multimodal biometric authentication schemes: a systematic review. IEEE Access 9, 34541–34557 (2021). https://doi.org/10.1109/ACCESS.2021.3061589

    Article  Google Scholar 

  35. Hameed, K., Garg, S., Amin, M.B., Kang, B.: A formally verified blockchain-based decentralised authentication scheme for the internet of things. J. Supercomput. 77(12), 14461–14501 (2021). https://doi.org/10.1007/s11227-021-03841-1

    Article  Google Scholar 

  36. Kitchenham, B.: Procedures for performing systematic reviews, (2004). 10.1.1.122.3308

  37. Gope, P., Sikdar, B.: Lightweight and privacy-preserving two-factor authentication scheme for IoT devices. IEEE Internet Things J. 6(1), 580–589 (2019). https://doi.org/10.1109/JIOT.2018.2846299

    Article  Google Scholar 

  38. Das, A.K., Wazid, M., Kumar, N., Vasilakos, A.V., Rodrigues, J.J.P.C.: Biometrics-based privacy-preserving user authentication scheme for cloud-based industrial internet of things deployment. IEEE Internet Things J. 5(6), 4900–4913 (2018). https://doi.org/10.1109/JIOT.2018.2877690

    Article  Google Scholar 

  39. Liu, Z., Guo, C., Wang, B.: A physically secure, lightweight three-factor and anonymous user authentication protocol for iot. IEEE Access 8, 195914–195928 (2020). https://doi.org/10.1109/ACCESS.2020.3034219

    Article  Google Scholar 

  40. Liu, W., Wang, X., Peng, W.: Secure remote multi-factor authentication scheme based on chaotic map zero-knowledge proof for crowdsourcing internet of things. IEEE Access 8, 8754–8767 (2020). https://doi.org/10.1109/ACCESS.2019.2962912

    Article  Google Scholar 

  41. Wu, F., Li, X., Xu, L., Vijayakumar, P., Kumar, N.: A novel three-factor authentication protocol for wireless sensor networks with IoT notion. IEEE Syst. J. 15(1), 1120–1129 (2021). https://doi.org/10.1109/JSYST.2020.2981049

    Article  Google Scholar 

  42. Li, S., Zhang, T., Yu, B., He, K.: A provably secure and practical PUF-based end-to-end mutual authentication and key exchange protocol for IoT. IEEE Sens. J. 21(4), 5487–5501 (2021). https://doi.org/10.1109/JSEN.2020.3028872

    Article  Google Scholar 

  43. Aman, M.N., Basheer, M.H., Sikdar, B.: Two-factor authentication for IoT with location information. IEEE Internet Things J. 6(2), 3335–3351 (2019). https://doi.org/10.1109/JIOT.2018.2882610

    Article  Google Scholar 

  44. Liang, Y., Samtani, S., Guo, B., Yu, Z.: Behavioral biometrics for continuous authentication in the Internet-of-Things era: an artificial intelligence perspective. IEEE Internet Things J. 7(9), 9128–9143 (2020). https://doi.org/10.1109/JIOT.2020.3004077

    Article  Google Scholar 

  45. Mandal, S., Bera, B., Sutrala, A.K., Das, A.K., Choo, K.K.R., Park, Y.H.: Certificateless-signcryption-based three-factor user access control scheme for IoT environment. IEEE Internet Things J. 7(4), 3184–3197 (2020). https://doi.org/10.1109/JIOT.2020.2966242

    Article  Google Scholar 

  46. Li, W., Wang, P.: Two-factor authentication in industrial Internet-of-Things: attacks, evaluation and new construction. Futur. Gener. Comput. Syst. 101, 694–708 (2019). https://doi.org/10.1016/j.future.2019.06.020

    Article  Google Scholar 

  47. Vijayakumar, P., Obaidat, M.S., Azees, M., Islam, S.H., Kumar, N.: Efficient and secure anonymous authentication with location privacy for IoT-based WBANs. IEEE Trans. Ind. Inform. 16(4), 2603–2611 (2020). https://doi.org/10.1109/TII.2019.2925071

    Article  Google Scholar 

  48. Li, X., Peng, J., Niu, J., Wu, F., Liao, J., Choo, K.K.R.: A robust and energy efficient authentication protocol for industrial internet of things. IEEE Internet Things J. 5(3), 1606–1615 (2018). https://doi.org/10.1109/JIOT.2017.2787800

    Article  Google Scholar 

  49. Ghani, A., Mansoor, K., Mehmood, S., Chaudhry, S.A., Rahman, A.U., Najmus Saqib, M.: Security and key management in IoT-based wireless sensor networks: An authentication protocol using symmetric key. Int. J. Commun. Syst. (2019). https://doi.org/10.1002/dac.4139

    Article  Google Scholar 

  50. Aghili, S.F., Mala, H., Shojafar, M., Peris-Lopez, P.: LACO: lightweight three-factor authentication, access control and ownership transfer scheme for E-health systems in IoT. Futur. Gener. Comput. Syst. 96, 410–424 (2019). https://doi.org/10.1016/j.future.2019.02.020

    Article  Google Scholar 

  51. Rao, V., Prema, K.V.: Light-weight hashing method for user authentication in Internet-of-Things. Ad Hoc Netw. 89, 97–106 (2019). https://doi.org/10.1016/j.adhoc.2019.03.003

    Article  Google Scholar 

  52. Lara, E., Aguilar, L., Sanchez, M.A., García, J.A.: Lightweight authentication protocol for M2M communications of resource-constrained devices in industrial internet of things. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20020501

    Article  Google Scholar 

  53. Li, J., et al.: A fast and scalable authentication scheme in IOT for smart living. Futur. Gener. Comput. Syst. 117, 125–137 (2021). https://doi.org/10.1016/j.future.2020.11.006

    Article  Google Scholar 

  54. Jabbari, A., Mohasefi, J.B.: A secure and LoRaWAN compatible user authentication protocol for critical applications in the IoT environment. IEEE Trans. Ind. Inform 18(1), 56–65 (2022). https://doi.org/10.1109/TII.2021.3075440

    Article  Google Scholar 

  55. Turkanović, M., Brumen, B., Hölbl, M.: A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Netw. 20, 96–112 (2014). https://doi.org/10.1016/j.adhoc.2014.03.009

    Article  Google Scholar 

  56. Malik, M., Dutta, M.: L-ECQV : lightweight ECQV implicit certificates for authentication in the Internet of Things. IEEE Access 11(March), 35517–35540 (2023). https://doi.org/10.1109/ACCESS.2023.3261666

    Article  Google Scholar 

  57. Alwarafy, A., Al-Thelaya, K.A., Abdallah, M., Schneider, J., Hamdi, M.: A survey on security and privacy issues in edge-computing-assisted Internet of Things. IEEE Internet Things J. 8(6), 4004–4022 (2021). https://doi.org/10.1109/JIOT.2020.3015432

    Article  Google Scholar 

  58. Navas, R.E., Cuppens, F., Boulahia Cuppens, N., Toutain, L., Papadopoulos, G.Z.: Physical resilience to insider attacks in IoT networks: Independent cryptographically secure sequences for DSSS anti-jamming. Comput. Netw. (2021). https://doi.org/10.1016/j.comnet.2020.107751

    Article  Google Scholar 

  59. Il Bae, W., Kwak, J.: Smart card-based secure authentication protocol in multi-server IoT environment. Multimed Tools Appl. (2017). https://doi.org/10.1007/s11042-017-5548-2

    Article  Google Scholar 

  60. Quamara M., Gupta, B.B., Yamaguchi, S.: An end-to-end security framework for smart healthcare information sharing against botnet-based cyber-attacks, In: Dig. Tech. Pap.: IEEE Int. Conf. Consum. Electron., vol. 2021-Janua, pp. 1–4, (2021). https://doi.org/10.1109/ICCE50685.2021.9427753.

  61. Xu, Z., Xu, C., Liang, W., Xu, J., Chen, H.: A lightweight mutual authentication and key agreement scheme for medical internet of things. IEEE Access 7, 53922–53931 (2019). https://doi.org/10.1109/ACCESS.2019.2912870

    Article  Google Scholar 

  62. Aghili, S.F., Mala, H., Kaliyar, P., Conti, M.: SecLAP: secure and lightweight RFID authentication protocol for Medical IoT. Futur. Gener. Comput. Syst. 101, 621–634 (2019). https://doi.org/10.1016/j.future.2019.07.004

    Article  Google Scholar 

  63. Amin, R., Kumar, N., Biswas, G.P., Iqbal, R., Chang, V.: A light weight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Futur. Gener. Comput. Syst. 78, 1005–1019 (2018). https://doi.org/10.1016/j.future.2016.12.028

    Article  Google Scholar 

  64. Yang, S.K., Shiue, Y.M., Su, Z.Y., Liu, I.H., Liu, C.G.: An authentication information exchange scheme in WSN for IoT applications. IEEE Access 8, 9728–9738 (2020). https://doi.org/10.1109/ACCESS.2020.2964815

    Article  Google Scholar 

  65. Burakgazi Bilgen, M., Abul, O., Bicakci, K.: Authentication-enabled attribute-based access control for smart homes. Int. J. Inf. Secur. 22(2), 479–495 (2023). https://doi.org/10.1007/s10207-022-00639-x

    Article  Google Scholar 

  66. Thakare, A., Kim, Y.G.: Secure and efficient authentication scheme in IoT environments, In: Dep. Comput. Inf. Secur. Converg. Eng. Intell. Drone, Sejong Univ. Seoul 05006, Korea, 11(3), (2021)

  67. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols, In: 1st ACM Conf. Comput. Commun. Secur., pp. 62–73, (1993)

  68. Garg, S., Kaur, K., Kaddoum, G., Choo, K.K.R.: Toward secure and provable authentication for internet of things: realizing industry 4.0. IEEE Internet Things J. 7(5), 4598–4606 (2020). https://doi.org/10.1109/JIOT.2019.2942271

    Article  Google Scholar 

  69. Li, D., et al.: Blockchain-based authentication for IIoT devices with PUF. J. Syst. Archit. 130, 102638 (2022). https://doi.org/10.1016/J.SYSARC.2022.102638

    Article  Google Scholar 

  70. Qureshi, M.A., Munir, A.: PUF-IPA: a PUF-based identity preserving protocol for Internet of Things authentication, In: 2020 IEEE 17th Annu. Consum. Commun. Netw. Conf. CCNC 2020, (2020). https://doi.org/10.1109/CCNC46108.2020.9045264

  71. Huszti, A., Kovács, S., Oláh, N.: Scalable, password-based and threshold authentication for smart homes. Int. J. Inf. Secur. 21(4), 707–723 (2022). https://doi.org/10.1007/s10207-022-00578-7

    Article  Google Scholar 

  72. Lohachab, A., Karambir: ECC based inter-device authentication and authorization scheme using MQTT for IoT networks. J. Inf. Secur. Appl. 46, 1–12 (2019). https://doi.org/10.1016/j.jisa.2019.02.005

    Article  Google Scholar 

  73. Jangirala, S., Das, A.K., Vasilakos, A.V.: Designing secure lightweight blockchain-Enabled RFID-based authentication protocol for supply chains in 5G mobile edge computing environment. IEEE Trans. Ind. Inform. 16(11), 7081–7093 (2020). https://doi.org/10.1109/TII.2019.2942389

    Article  Google Scholar 

  74. Atiewi, S., et al.: Scalable and secure big data IoT system based on multifactor authentication and lightweight cryptography. IEEE Access 8, 113498–113511 (2020). https://doi.org/10.1109/ACCESS.2020.3002815

    Article  Google Scholar 

  75. Haseeb, K., Almogren, A., Din, I.U., Islam, N., Altameem, A.: SASC: secure and authentication-based sensor cloud architecture for intelligent internet of things. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20092468

    Article  Google Scholar 

  76. Azrour, M., Mabrouki, J., Guezzaz, A., Farhaoui, Y.: New enhanced authentication protocol for Internet of Things. Big Data Min. Anal. 4(1), 1–9 (2021). https://doi.org/10.26599/BDMA.2020.9020010

    Article  Google Scholar 

  77. Dammak, M., Boudia, O.R.M., Messous, M.A., Senouci, S.M., Gransart, C.: Token-based lightweight authentication to secure IoT networks. In: 2019 16th IEEE Annu. Consum. Commun. Netw. Conf. CCNC 2019, (2019). https://doi.org/10.1109/CCNC.2019.8651825.

  78. Sun, J., Khan, F., Li, J., Alshehri, M.D., Alturki, R., Wedyan, M.: Mutual authentication scheme for the device-to-server communication in the internet of medical things. IEEE Internet Things J. 8(21), 15663–15671 (2021). https://doi.org/10.1109/JIOT.2021.3078702

    Article  Google Scholar 

  79. Zhou, H., Lv, K., Huang, L., Ma, X.: Quantum network: security assessment and key management. IEEE/ACM Trans. Netw. 30(3), 1328–1339 (2022). https://doi.org/10.1109/TNET.2021.3136943

    Article  Google Scholar 

Download references

Funding

Funding information is not applicable/no funding was received.

Author information

Authors and Affiliations

Authors

Contributions

SB contributed to conceptualization, methodology, validation, and writing—review and editing, and supervision. EE involved in searching, writing—original draft, and simulation.

Corresponding author

Correspondence to Shahram Babaie.

Ethics declarations

Conflict of interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpour, E., Babaie, S. Authentication in Internet of Things, protocols, attacks, and open issues: a systematic literature review. Int. J. Inf. Secur. 23, 1583–1602 (2024). https://doi.org/10.1007/s10207-023-00806-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00806-8

Keywords

Navigation