Skip to main content
Log in

A compact lowpass filter with ultra-high figure-of-merit for integrating with Class-F/F−1 power amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This Paper presents a microstrip lowpass filter (LPF) with compact size, and ultra-wide stopband. The structure consists of a semi-circular shaped resonator (SCSR) and circular patches as the suppressing cell. The proposed LPF has a − 3 dB cutoff frequency at 1.53 GHz. It also has suitable performances such as an extended stopband width from 1.62 to 19.1 GHz (with the attenuation level of more than − 20 dB), ultra-sharp transition-band of 0.09 GHz (from − 3 to − 20 dB). Low insertion loss, high return loss and flat group delay in the region of the passband are very significant properties of this LPF. A proper agreement between the simulation and measurement results has been achieved after the fabrication and testing. Proposed LPF has an ultra-high figure-of-merit (FOM) of 126168, showing its strong efficiency. Forasmuch as harmonic control circuits (HCCs) play a key role in designing Class-F/F−1 power amplifiers (PAs); the asymmetric high performance LPFs can be used at the input and output of these PAs in the HCC section. Therefore, the proposed LPF can be suggested for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cui, H., Wang, J., & Zhang, G. (2012). Design of microstrip lowpass filter with compact size and ultra-wide stopband. Electronics Letters, 48(14), 856–857.

    Article  Google Scholar 

  2. Wang, J., Cui, H., & Zhang, G. (2012). Design of compact microstrip lowpass filter with ultra-wide stopband. Electronics Letters, 48(14), 854–856.

    Article  Google Scholar 

  3. Faraghi, A., Ojaroudi, M., & Ghadimi, N. (2014). Compact microstrip low-pass filter with sharp selection characteristics using triple novel defected structures for UWB applications. Microwave and Optical Technology Letters, 56(4), 1007–1010.

    Article  Google Scholar 

  4. Chen, X., Zhang, L., Peng, Y., Leng, Y., Lu, H., & Zheng, Z. (2015). Compact lowpass filter with wide stopband bandwidth. Microwave and Optical Technology Letters, 57(2), 367–371.

    Article  Google Scholar 

  5. Wei, F., Chen, L., & Shi, X. W. (2012). Compact lowpass filter based on coupled-line hairpin unit. Electronic Letters, 48, 379–381.

    Article  Google Scholar 

  6. Ma, K., Yeo, K. S., & Lim, W. M. (2012). Ultra-wide rejection band lowpass cell. Electronics Letters, 48(2), 99–100.

    Article  Google Scholar 

  7. Liu, S., Xu, J., & Xu, Z. (2014). Compact lowpass filter with wide stopband using stepped impedance hairpin units. Electronics Letters, 51(1), 67–69.

    Article  Google Scholar 

  8. Hayati, M., & Lotfi, A. (2010). Compact lowpass filter with high and wide rejection in stopband using front coupled tapered CMRC. Electronics Letters, 46(12), 846–848.

    Article  Google Scholar 

  9. Hayati, M., Shama, F., & Ekhteraei, M. (2016). Miniaturized microstrip suppressing cell with wide stopband. Applied Computational Electromagnetics Society Journal, 31(10), 1244–1249.

    Google Scholar 

  10. Hayati, M., & Shama, F. (2017). A high-efficiency narrow-band class-F power amplifier integrated with a microstrip suppressing cell. Analog Integrated Circuits and Signal Processing, 90(2), 351–359.

    Article  Google Scholar 

  11. Hayati, M., & Shama, F. (2016). A harmonic-suppressed high-efficiency class-F power amplifier with Elliptic-Function low-pass filter. AEU-International Journal of Electronics and Communications, 70(10), 1417–1425.

    Article  Google Scholar 

  12. Hayati, M., Shama, F., Roshani, S., & Abdipour, A. (2014). Linearization design method in class-F power amplifier using artificial neural network. Journal of Computational Electronics, 13(4), 943–949.

    Article  Google Scholar 

  13. Hong, J. S. G., & Lancaster, M. J. (2004). Microstrip filters for RF/microwave applications (Vol. 167). New York: Wiley.

    Google Scholar 

  14. Fooks, E. H., & Zakarevicius, R. A. (1990). Microwave engineering using microstrip circuits. Upper Saddle River: Prentice-Hall Inc.

    Google Scholar 

  15. Hayati, M., Hajian, G., Shama, F., & Shahbazitabar, M. (2012). A novel microstrip lowpass filter with ultra-wide stopband using butterfly-shaped resonator. Caspian Journal of Applied Sciences Research, 1(13), 126–132.

    Google Scholar 

  16. Hayati, M., & Sheikhi, A. (2011). Design of wide stopband lowpass filter with sharp roll-off. IEICE Electronics Express, 8(16), 1348–1353.

    Article  Google Scholar 

  17. Hayati, M., & Sheikhi, A. (2011). Compact lowpass filter with ultra-wide stopband using novel spiral compact microstrip resonant cell. IEICE Electronics Express, 8(13), 1028–1033.

    Article  Google Scholar 

  18. Hayati, M., & Sheikhi, A. (2011). Microstrip lowpass filter with very sharp transition band and wide stopband. ETRI Journal, 33(6), 981–984.

    Article  Google Scholar 

  19. Hayati, M., & Sheikhi, A. (2013). Microstrip lowpass filter with very sharptransition band using T-shaped, patch, and stepped impedance resonators. ETRI Journal, 35(3), 538–541.

    Article  Google Scholar 

  20. Hayati, M., Ekhteraei, M., & Shama, F. (2017). Compact lowpass filter with flat group delay using lattice-shaped resonator. Electronic Letters, 53(7), 475–476.

    Article  Google Scholar 

  21. Kumar, A., Choudhary, D. K., & Chaudhary, R. K. (2017). A Compact via-free composite right/left handed low-pass filter with improved selectivity. Frequenz, 71(7–8), 357–361.

    Google Scholar 

  22. Hayati, M., Ekhteraei, M., & Shama, F. (2017). A compact microstrip lowpass filter with flat group-delay and ultra high figure-of-merit. In ACES (Vol. 32(2), p. 147).

  23. Kolahi, A., & Shama, F. (2018). Compact microstrip lowpass filter with flat group-delay using triangle-shaped resonators. AEU-International Journal of Electronics and Communications, 83, 433–438.

    Article  Google Scholar 

  24. Shama, F., Hayati, M., & Ekhteraei, M. (2018). Compact microstrip lowpass filter using meandered unequal T-shaped resonator with ultra-wide rejection band. AEU-International Journal of Electronics and Communications, 85, 78–83.

    Article  Google Scholar 

  25. Hiedari, B., & Shama, F. (2018). A harmonics suppressed microstrip cell for integrated applications. AEU-International Journal of Electronics and Communications, 83, 519–522.

    Article  Google Scholar 

  26. Hayati, M., Shama, F., & Abbasi, H. (2013). Compact microstrip lowpass filter with wide stopband and sharp roll-off using tapered resonator. International Journal of Electronics, 100(12), 1751–1759.

    Article  Google Scholar 

  27. Hayati, M., Gholami, M., Vaziri, H. S., & Zaree, T. (2014). Design of microstrip lowpass filter with wide stopband and sharp roll-off using hexangular shaped resonator. Electronics Letters, 51(1), 69–71.

    Article  Google Scholar 

  28. Wei, F., Chen, L., Shi, X. W., Huang, Q. L., & Wang, X. H. (2010). Compact lowpass filter with wide stop-band using coupled-line hairpin unit. Electronics Letters, 46(1), 1.

    Article  Google Scholar 

  29. He, Q., & Liu, C. (2009). A novel low-pass filter with an embedded band-stop structure for improved stop-band characteristics. IEEE Microwave and Wireless Components Letters, 19(10), 629–631.

    Article  Google Scholar 

  30. Li, J. L., Qu, S. W., & Xue, Q. (2009). Compact microstrip lowpass filter with sharp roll-off and wide stop-band. Electronics Letters, 45(2), 110–111.

    Article  Google Scholar 

  31. Hayati, M., & Shama, F. (2012). Compact microstrip low-pass filter with wide stopband using symmetrical U-shaped resonator. IEICE Electronics Express, 9(3), 127–132.

    Article  Google Scholar 

  32. Hayati, M., & Vaziri, H. S. (2013). Compact microstrip low-pass filter with wide stop-band and sharp roll-off. Frequenz, 67(9–10), 263–269.

    Google Scholar 

  33. Hayati, M., Abbasi, H., & Shama, F. (2014). Microstrip lowpass filter with ultra wide stopband and sharp roll-off. Arabian Journal for Science and Engineering, 39(8), 6249–6253.

    Article  Google Scholar 

  34. Zhang, B., Li, Sh, & Huang, J. (2015). Compact lowpass filter with wide stopband using coupled rhombic stubs’. IEEE Microwave and Wireless Component Letters, 51(3), 264–266.

    Google Scholar 

  35. Hayati, M., Validi, M., Shama, F., & Ekhteraei, M. (2016). Compact microstrip low-pass filter with wide stop-band using P-shaped resonator. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 15(4), 309–318.

    Article  Google Scholar 

  36. Hayati, M., Vaziri, H. S., Ekhteraei, M., & Shama, F. (2016). Compact microstrip lowpass filter with ultra-sharp roll-off and ultra-wide stopband using stepped impedance hairpin resonator. Optik-International Journal for Light and Electron Optics, 127(13), 5221–5225.

    Article  Google Scholar 

  37. Hayati, M., Khodadoost, M., & Abbasi, H. (2017). Microstrip lowpass filter with wide stopband and sharp roll-off using modified radial stub resonator. International Journal of Microwave and Wireless Technologies, 9(3), 499–504.

    Article  Google Scholar 

  38. Jiang, Y., Wei, B., Heng, Y., Guo, X., Cao, B., & Jiang, L. (2017). Compact superconducting lowpass filter with wide stopband. Electronics Letters, 53(14), 931–933.

    Article  Google Scholar 

  39. Jiang, S., & Xu, J. (2017). Sharp roll-off planar lowpass filter with ultra-wide stopband up to 40 GHz. Electronics Letters, 53(11), 734–735.

    Article  Google Scholar 

  40. Jiang, S., & Xu, J. (2017). Compact microstrip lowpass filter with ultra-wide stopband based on dual-plane structure. Electronics Letters, 53(9), 607–609.

    Article  Google Scholar 

  41. Sheikhi, A., Alipour, A., & Hemesi, H. (2017). Design of microstrip wide stopband lowpass filter with lumped equivalent circuit. Electronics Letters, 53(21), 1416–1418.

    Article  Google Scholar 

  42. Wu, J. J., & Li, L. (2018). Stopband-extended and size-miniaturized low-pass filter based on interdigital capacitor loaded hairpin resonator with four transmission zeros. Frequenz, 72(5–6), 221–226.

    Article  Google Scholar 

  43. Sahu, B., Singh, S., Meshram, M. K., & Singh, S. P. (2018). Study of compact microstrip lowpass filter with improved performance using defected ground structure. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), e21209.

    Article  Google Scholar 

  44. Bhat, U. R., Jha, K. R., & Singh, G. (2018). Wide stopband harmonic suppressed low-pass filter with novel DGS. International Journal of RF and Microwave Computer-Aided Engineering, 28(5), e21235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekhteraei, M., Hayati, M. & Shama, F. A compact lowpass filter with ultra-high figure-of-merit for integrating with Class-F/F−1 power amplifiers. Analog Integr Circ Sig Process 99, 655–667 (2019). https://doi.org/10.1007/s10470-018-01387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-01387-6

Keywords

Navigation