Skip to main content

Advertisement

Log in

Exploring steam stability of mesoporous alumina species for improved carbon dioxide sorbent design

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Many different metrics exist to assess the efficacy of a carbon capture sorbent, though one of the pivotal characteristics is stability on regeneration, most notably steam stability, which applies to steam stripping regeneration, a technique proposed for capture of CO2 from humid flue gas. In this study, the steam stability of two different mesoporous alumina species is compared, with an aim to tune the synthesis methodology and the local structure and crystallinity of the samples to create a stable regenerable sorbent. The roles of calcination temperature and aminopolymer impregnation on sorbent stability and structure are also investigated using a wide range of characterization techniques to specifically probe the influence of the alumina support. We show through this study that support choice, and support stability, can play an important role in sorbent design for carbon capture. We highlight that regular crystallinity (such as in γ-alumina) hinders the formation of pseudo-boehmite, allowing a material to retain its CO2 uptake. Further, we show that the addition of aminopolymers (PEI) can facilitate phase changes, however aminopolymers help maintain the mesoporosity of the sample, a key metric for CO2 uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Choi S, Gray ML, Jones CW (2011) Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. Chemsuschem 4:628–635

    Article  Google Scholar 

  2. Bonan CB (2008) Forests and climate change: forcings, feedbacks and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  3. Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876

    Article  Google Scholar 

  4. IEA (2012) CO2 emissions from fuel combustion highlights. OECD/IEA, Paris

    Google Scholar 

  5. Fisher JC, Gray M (2015) Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture. Chemsuschem 8:452–455

    Article  Google Scholar 

  6. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    Article  Google Scholar 

  7. Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, Sumida K, Micklash KJ, Kaye SS, Brown CM, Long JR (2013) Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ Sci 6:128–138

    Article  Google Scholar 

  8. Fracaroli AM, Furukawa H, Suzuki M, Dodd M, Okajima S, Gandara F, Reimer JA, Yaghi OM (2014) Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J Am Chem Soc 136:8863–8866

    Article  Google Scholar 

  9. Chai SH, Liu ZM, Huang K, Tan S, Dai S (2016) Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture. Ind Eng Chem Res 55:7355–7361

    Article  Google Scholar 

  10. Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4:3805–3819

    Article  Google Scholar 

  11. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132:6312–6314

    Article  Google Scholar 

  12. Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces 7:2137–2148

    Article  Google Scholar 

  13. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167

    Article  Google Scholar 

  14. Sanz R, Calleja G, Arencibia A, Sanz-Perez ES (2015) CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization. Microporous Mesoporous Mater 209:165–171

    Article  Google Scholar 

  15. Wang XX, Ma XL, Schwartz V, Clark JC, Overbury SH, Zhao SQ, Xu XC, Song C (2012) A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions. Phys Chem Chem Phys 14:1485–1492

    Article  Google Scholar 

  16. Son WJ, Choi JS, Ahn WS (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater 113:31–40

    Article  Google Scholar 

  17. Wang D, Ma X, Sentorun-Shalaby C, Song C (2012) Development of carbon-based “molecular basket” sorbent for CO2 capture. Ind Eng Chem Res 51:3048–3057

    Article  Google Scholar 

  18. Heydari-Gorji A, Belmabkhout Y, Sayari A (2011) Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27:12411–12416

    Article  Google Scholar 

  19. Choi W, Min K, Kim C, Ko YS, Jeon J, Seo H, Park YK, Choi M (2016) Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat Commun 7:12640

    Article  Google Scholar 

  20. Niu MY, Yang HM, Zhang XC, Wang YT, Tang AD (2016) Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl Mater Interfaces 8:17312–17320

    Article  Google Scholar 

  21. Bali S, Leisen J, Foo GS, Sievers C, Jones CW (2014) Aminosilanes grafted to basic alumina as CO2 adsorbents—role of grafting conditions on CO2 adsorption properties. Chemsuschem 7:3145–3156

    Article  Google Scholar 

  22. Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL (2005) Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind Eng Chem Res 44:3099–3105

    Article  Google Scholar 

  23. Zelenak V, Skrinska M, Zukal A, Cejka J (2018) Carbon dioxide adsorption over amine modified silica: effect of amine basicity and entropy factor on isosteric heats of adsorption. Chem Eng J 348:327–337

    Article  Google Scholar 

  24. Drese JH, Choi S, Lively RP, Koros WJ, Fauth DJ, Gray ML, Jones CW (2009) Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents. Adv Funct Mater 19:3821–3832

    Article  Google Scholar 

  25. Wilfong WC, Kail BW, Jones CW, Pacheco C, Gray ML (2016) Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: a new class 4 category. ACS Appl Mater Interfaces 8:12780–12791

    Article  Google Scholar 

  26. Fujiki J, Chowdbury FA, Yamada H, Yogo K (2017) Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent. Chem Eng J 307:273–282

    Article  Google Scholar 

  27. Hammache S, Hoffman JS, Gray ML, Fauth DJ, Howard BH, Pennline HW (2013) Comprehensive study of the impact of steam on polyethyleneimine on silica for CO2 capture. Energy Fuels 27:6899–6905

    Article  Google Scholar 

  28. Li KM, Jiang JG, Tian SC, Yan F, Chen XJ (2015) Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO2 capture. J Mater Chem A 3:2166–2175

    Article  Google Scholar 

  29. Zhao W, Zhang Z, Li Z, Cai N (2013) Investigation of thermal stability and continuous CO2 capture from flue gases with supported amine sorbent. Ind Eng Chem Res 52:2084–2093

    Article  Google Scholar 

  30. Sakwa-Novak MA, Yoo CJ, Tan S, Rashidi F, Jones CW (2016) Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air. Chemsuschem 9:1859–1868

    Article  Google Scholar 

  31. Ebner AD, Gray ML, Chisholm NG, Black QT, Mumford DD, Nicholson MA, Ritter JA (2011) Suitability of a solid amine sorbent for CO2 capture by pressure swing adsorption. Ind Eng Chem Res 50:5634–5641

    Article  Google Scholar 

  32. Mane S, Gao ZY, Li YX, Liu XQ, Sun LB (2018) Rational fabrication of polyethylenimine-linked microbeads for selective CO2 capture. Ind Eng Chem Res 57:250–258

    Article  Google Scholar 

  33. Zhou Z, Balijepalli SK, Nguyen-Sorenson AHT, Anderson CM, Park JL, Stowers KJ (2018) Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture. Energy Fuels 32:11701–11709

    Article  Google Scholar 

  34. Sakwa-Novak MA, Jones CW (2014) Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air. ACS Appl Mater Interfaces 6:9245–9255

    Article  Google Scholar 

  35. Gunathilake C, Gangoda M, Jaroniec M (2016) Mesoporous alumina with amidoxime groups for CO2 sorption at ambient and elevated temperatures. Ind Eng Chem Res 55:5598–5607

    Article  Google Scholar 

  36. Li W, Bollini P, Didas SA, Choi S, Drese JH, Jones CW (2010) Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Appl Mater Interfaces 2:3363–3372

    Article  Google Scholar 

  37. Isenberg M, Chaung SSC (2013) The nature of adsorbed CO2 and amine sites on the immobilized amine sorbents regenerated by industrial boiler steam. Ind Eng Chem Res 52:12530–12539

    Article  Google Scholar 

  38. Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater 116:504–512

    Article  Google Scholar 

  39. Li W, Choi S, Drese JH, Hornbostel M, Krishnan G, Eisenberger PM, Jones CW (2010) Steam-stripping for regeneration of supported amine-based CO2 adsorbents. Chemsuschem 3:899–903

    Article  Google Scholar 

  40. Chaikittisilp W, Kim HJ, Jones CW (2011) Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 25:5528–5537

    Article  Google Scholar 

  41. Sandhu NK, Pudasainee D, Sarkar P, Gupta R (2016) Steam regeneration of polyethylenimine-impregnated silica sorbent for postcombustion CO2 capture: a multicyclic study. Ind Eng Chem Res 55:2210–2220

    Article  Google Scholar 

  42. Fayaz M, Sayari A (2017) Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica. ACS Appl Mater Interfaces 9:43747–43754

    Article  Google Scholar 

  43. Wilfong WC, Kail BW, Gray ML (2015) Rapid screening of immobilized amine CO2 sorbents for steam stability by their direct contact with liquid H2O. Chemsuschem 8:2041–2045

    Article  Google Scholar 

  44. Min K, Choi W, Choi M (2017) Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. Chemsuschem 10:2518–2526

    Article  Google Scholar 

  45. Potter ME, Cho KM, Lee JJ, Jones CW (2017) Role of alumina basicity in CO2 uptake in 3-aminopropylsilyl-grafted alumina adsorbents. Chemsuschem 10:2192–2201

    Article  Google Scholar 

  46. Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL (2016) Phenomena affecting catalytic reactions at solid–liquid interfaces. ACS Catal 6:8286–8307

    Article  Google Scholar 

  47. Ciftci A, Peng B, Jentys A, Lercher JA, Hensen EJM (2012) Support effects in the aqueous phase reforming of glycerol over supported platinum catalysts. Appl Catal A Gen 431–432:113–119

    Article  Google Scholar 

  48. Lukens WW, Schmidt-Winkel P, Zhao D, Feng J, Stucky GD (1999) Evaluating pore sizes in mesoporous materials: a simplified standard adsorption method and a simplified Broekhoff−de Boer method. Langmuir 15:5403–5409

    Article  Google Scholar 

  49. Bali S, Chen TT, Chaikittisilp W, Jones CW (2013) Oxidative stability of amino polymer-alumina hybrid adsorbents for carbon dioxide capture. Energy Fuels 27:1547–1554

    Article  Google Scholar 

  50. Turek AM, Wachs IE, DeCanio E (1992) Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study. J Phys Chem 96:5000–5007

    Article  Google Scholar 

  51. Aravind PR, Mukundan P, Pillai PK, Warrier KGK (2006) Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous Mesoporous Mater 96:14–20

    Article  Google Scholar 

  52. Digne M, Sautet P, Raybaud P, Euzen P, Toulhaut H (2004) Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J Catal 226:54–68

    Article  Google Scholar 

  53. Ravenelle RM, Copeland JR, Van Pelt AH, Crittenden JC, Sievers C (2012) Stability of Pt/γ-Al2O3 catalysts in model biomass solutions. Top Catal 55:162–174

    Article  Google Scholar 

  54. Ravenelle RM, Copeland JR, Kim WG, Crittenden JC, Sievers C (2011) Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal 1:552–561

    Article  Google Scholar 

  55. Koichumanova K, Vikla AKK, de Vlieger DJM, Seshan K, Mojet BL, Lefferts L (2013) Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen. Chemsuschem 6:1717–1723

    Article  Google Scholar 

  56. Réocreux R, Jiang T, Iannuzzi M, Michel C, Sautet P (2018) Structuration and dynamics of interfacial liquid water at hydrated γ-alumina determined by ab initio molecular simulations: implications for nanoparticle stability. ACS Appl Nano Mater 1:191–199

    Article  Google Scholar 

  57. Holewinski A, Sakwa-Novak MA, Jones CW (2015) Linking CO2 sorption performance to polymer morphology in aminopolymer/silica composites through neutron scattering. J Am Chem Soc 137:11749–11759

    Article  Google Scholar 

Download references

Funding

This work was supported by the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center, funded by US Department of Energy (US DoE), Office of Science, Basic Energy Sciences (BES) under Award DE-SC0012577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Jones.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potter, M.E., Lee, J.J., Darunte, L.A. et al. Exploring steam stability of mesoporous alumina species for improved carbon dioxide sorbent design. J Mater Sci 54, 7563–7575 (2019). https://doi.org/10.1007/s10853-019-03418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03418-7

Navigation