Skip to main content
Log in

Fe3+-doped SnO2 inverse opal with high structural color saturation

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural color of inverse opal derived from the interaction between visible light and nanostructure is widely known for the extensive selection of materials, excellent light resistance stability, and environmental friendliness. In contrast to the opal structure, the light scattering in inverse opal is higher and results in milky appearance or even lack of color. In this work, we introduced Fe3+ into the structure of SnO2 inverse opal and successfully obtained an Fe3+-doped SnO2 inverse opal with high color saturation. The direct template method was applied, and the fcc arrangement of template spheres was well kept. Because of the charge transfer transition of Fe3+–O2−, Fe3+ absorbed most of the unwanted scattered light, thereby highlighting the band gap color. Meanwhile, the refractive index of inverse opal increased with the increase in Fe3+ content. It enabled the full spectral coverage in the visible region of the highly saturated structural color only by three particle size templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Parker AR (2000) 515 million years of structural colour. J Opt A: Pure Appl Opt 2:R15–R28

    Article  Google Scholar 

  2. Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z, Zhao Y (2017) Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci USA 114:5900

    Article  Google Scholar 

  3. Boyle BM, French TA, Pearson RM, McCarthy BG, Miyake GM (2017) Structural color for additive manufacturing: 3d-printed photonic crystals from block copolymers. ACS Nano 11:3052–3058

    Article  Google Scholar 

  4. Li Y, Calvo ME, Míguez H (2016) Integration of photonic crystals into flexible dye solar cells: a route toward bendable and adaptable optoelectronic devices displaying structural color and enhanced efficiency. Adv Optical Mater 4:464–471

    Article  Google Scholar 

  5. Liu G, Zhou L, Zhang G, Li Y, Chai L, Fan Q, Shao J (2017) Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater Des 114:10–17

    Article  Google Scholar 

  6. Dumanli AG, Savin T (2016) Recent advances in the biomimicry of structural colours. Chem Soc Rev 45:6698–6724

    Article  Google Scholar 

  7. Ge D, Lee E, Yang L, Cho Y, Li M, Gianola DS, Yang S (2015) A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv Mater 27:2489–2495

    Article  Google Scholar 

  8. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578

    Article  Google Scholar 

  9. Yi B, Shen H (2018) Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles. Appl Surf Sci 427:1129–1136

    Article  Google Scholar 

  10. Li F, Tang B, Wu S, Zhang S (2017) Facile synthesis of monodispersed polysulfide spheres for building structural colors with high color visibility and broad viewing angle. Small 13:1602565

    Article  Google Scholar 

  11. Chandler CJ, Wilts BD, Brodie J, Vignolini S (2017) Structural color in marine algae. Adv Opt Mater 5:1600646

    Article  Google Scholar 

  12. Ding H, Zhu C, Tian L, Liu C, Fu G, Shang L, Gu Z (2017) Structural color patterns by electrohydrodynamic jet printed photonic crystals. ACS Appl Mater Interfaces 9:11933–11941

    Article  Google Scholar 

  13. Zhang W, Anaya M, Lozano G, Calvo ME, Johnston MB, Míguez H, Snaith HJ (2015) Highly efficient perovskite solar cells with tunable structural color. Nano Lett 15:1698–1702

    Article  Google Scholar 

  14. Wang W, Fan X, Li F, Qiu J, Umair MM, Ren W, Ju B, Zhang S, Tang B (2018) Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv Opt Mater 6:1701093

    Article  Google Scholar 

  15. Bai L, Mai VC, Lim Y, Hou S, Möhwald H, Duan H (2018) Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly. Adv Mater 30:1705667

    Article  Google Scholar 

  16. Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chem Soc Rev 42:2763–2803

    Article  Google Scholar 

  17. Liu C, Ding H, Wu Z, Gao B, Fu F, Shang L, Gu Z, Zhao Y (2016) Tunable structural color surfaces with visually self-reporting wettability. Adv Funct Mater 26:7937–7942

    Article  Google Scholar 

  18. Meng Y, Liu F, Umair MM, Ju B, Zhang S, Tang B (2018) Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes. Adv Opt Mater 6:1701351

    Article  Google Scholar 

  19. Puzzo DP, Arsenault AC, Manners I, Ozin GA (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947

    Article  Google Scholar 

  20. Ozaki M, Shimoda Y, Kasano M, Yoshino K (2002) Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv Mater 14:514–518

    Article  Google Scholar 

  21. Couturier J, Sütterlin M, Laschewsky A, Hettrich C, Wischerhoff E (2015) Responsive inverse opal hydrogels for the sensing of macromolecules. Angew Chem Int Ed 54:6641–6644

    Article  Google Scholar 

  22. Min K, Kim S, Kim S (2017) Deformable and conformal silk hydrogel inverse opal. Proc Natl Acad Sci USA 114:6185–6190

    Article  Google Scholar 

  23. Mclntosh GJ, Metson JB (2016) Surface area characteristics of furfuryl-alcohol-derived inverse opal carbons produced from silica inverse opal templates. J Mater Sci 51:2573–2584. https://doi.org/10.1007/s10853-015-9570-3

    Article  Google Scholar 

  24. Li H, Wang J, Pan Z, Cui L, Xu L, Wang R, Song Y, Jiang L (2011) Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J Mater Chem 21:1730–1735

    Article  Google Scholar 

  25. Schaffner M, England G, Kolle M, Aizenberg J, Vogel N (2015) Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order. Small 11:4334–4340

    Article  Google Scholar 

  26. O’Dwyer C (2016) Color-coded batteries-electro-photonic inverse opal materials for enhanced electrochemical energy storage and optically encoded diagnostics. Adv Mater 28:5681–5688

    Article  Google Scholar 

  27. Chen Z, Pan D, Li Z, Jiao Z, Wu M, Shek C, Wu CML, Lai JKL (2014) Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 114:7442–7486

    Article  Google Scholar 

  28. Dimitrov V, Sakka S (1996) Electronic oxide polarizability and optical basicity of simple oxides. I. J Appl Phys 79:1736–1740

    Article  Google Scholar 

  29. Han MG, Shin CG, Jeon S, Shim H, Heo C, Jin H, Kim JW, Lee S (2012) Full color tunable photonic crystal from crystalline colloidal arrays with an engineered photonic stop-band. Adv Mater 24:6438–6444

    Article  Google Scholar 

  30. Shen Z, Shi L, You B, Wu L, Zhao D (2012) Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J Mater Chem 22:8069–8075

    Article  Google Scholar 

  31. Yi B, Shen H (2017) Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J Mater Chem C 5:8194–8200

    Article  Google Scholar 

  32. Ge D, Yang X, Chen Z, Yang L, Wu G, Xia Y, Yang S (2017) Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale 9:17357–17363

    Article  Google Scholar 

  33. Josephson DP, Popczun EJ, Stein A (2013) Effects of integrated carbon as a light absorber on the coloration of photonic crystal-based pigments. J Phys Chem C 117:13585–13592

    Article  Google Scholar 

  34. Josephson DP, Miller M, Stein A (2014) Inverse opal SiO2 photonic crystals as structurally-colored pigments with additive primary colors. Z Anorg Allg Chem 640:655–662

    Article  Google Scholar 

  35. Stein A, Li F, Denny NR (2008) Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater 20:649–666

    Article  Google Scholar 

  36. Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J (2016) A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev 45:281–322

    Article  Google Scholar 

  37. Liu F, Shan B, Zhang S, Tang B (2018) SnO2 inverse opal composite film with low-angle-dependent structural color and enhanced mechanical strength. Langmuir 34:3918–3924

    Article  Google Scholar 

  38. Bonu V, Das A, Sivadasan AK, Tyagi AK, Dhara S (2015) Invoking forbidden modes in SnO2 nanoparticles using tip enhanced raman spectroscopy. J Raman Spectrosc 46:1037–1040

    Article  Google Scholar 

  39. Hays J, Punnoose A, Baldner R, Engelhard MH, Peloquin JMK (2005) Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B 72:075203

    Article  Google Scholar 

  40. Reddy MV, Yu T, Sow C, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) α-Fe2O3 nanoflakes as an anode material for li-ion batteries. Adv Funct Mater 17:2792–2799

    Article  Google Scholar 

  41. Jiang P, Li J, Sleight AW, Subramanian MA (2011) New oxides showing an intense orange color based on Fe3+ in trigonal-bipyramidal coordination. Inorg Chem 50:5858–5860

    Article  Google Scholar 

  42. James V, Rao PP, Sameera S, Divya S (2014) Multiferroic based reddish brown pigments: Bi1−xMxFeO3 (M = Y and La) for coloring applications. Ceram Int 40:2229–2235

    Article  Google Scholar 

  43. Jovaní M, Fortuño-Morte M, Beltrán-Mir H, Cordoncillo E (2018) Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7. J Eur Ceram Soc 38:2210–2217

    Article  Google Scholar 

  44. Zhou L, Li Y, Liu G, Fan Q, Shao J (2016) Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates. Dyes Pigments 133:435–444

    Article  Google Scholar 

  45. Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical properties of inverse opal photonic crystals. Chem Mater 14:3305–3315

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21878043, 21576039, 21276042, 21536002, 21421005 and U1608223), Program for Innovative Research Team in University (IRT_13R06), the Fundamental Research Funds for the Central Universities (DUT18ZD218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingtao Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Gao, Z., Hu, J. et al. Fe3+-doped SnO2 inverse opal with high structural color saturation. J Mater Sci 54, 10609–10619 (2019). https://doi.org/10.1007/s10853-019-03657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03657-8

Navigation