Skip to main content
Log in

The measured essentiality of electron effective mass on electron transport behavior and optical band gap in Ga-doped ZnO thin films

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electron effective mass (\( m_{\text{e}}^{*} \)) of Ga-doped ZnO (GZO) thin films is determined using electrical and spectroscopic ellipsometry measurements. The effects of different \( m_{\text{e}}^{*} \) used in the literature on electrical transport behavior and optical band gap shift are comparatively investigated to analyze the error qualitatively. The self-contradictory results of electrical transport behavior and the small deviation of optical band gap shift from the fixed \( m_{\text{e}}^{*} \) indicate that the accurate \( m_{\text{e}}^{*} \) has a more significant influence on the analysis of electrical transport behavior than the optical band gap shift. These results can be extended to other materials and provide a guideline to make the relevant analysis more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kumar SG, Rao KSRK (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5:3306–3351

    Article  Google Scholar 

  2. Yang T, Chang X, Chen J, Chou KC, Hou X (2015) B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 7:8955–8961

    Article  Google Scholar 

  3. Hu B, Xu J, Wang J, Liu B, Du B (2018) Pressure effect on structural and electrical properties of AZO thin films annealed in N2/H2 atmosphere. Mater Lett 232:51–53

    Article  Google Scholar 

  4. Abliz A, Xu L, Wan D, Duan H, Wang J, Wang C, Luo S, Liu C (2019) Effects of yttrium doping on the electrical performances and stability of ZnO thin-film transistors. Appl Surf Sci 475:565–570

    Article  Google Scholar 

  5. Choi Y-J, Gong SC, Park C-S, Lee H-S, Jang JG, Chang HJ, Yeom GY, Park H-H (2013) Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition. ACS Appl Mater Interfaces 5:3650–3655

    Article  Google Scholar 

  6. Wan D, Huang F, Wang Y, Mou X, Xu F (2010) Highly surface-textured ZnO: Al films fabricated by controlling the nucleation and growth separately for solar cell applications. ACS Appl Mater Interfaces 2:2147–2152

    Article  Google Scholar 

  7. Zhou J, Wu XZ, Xiao DB, Zhuo M, Jin H, Luo JK, Fu YQ (2017) Deposition of aluminum doped ZnO as electrode for transparent ZnO/glass surface acoustic wave devices. Surf Coat Technol 320:39–46

    Article  Google Scholar 

  8. Kim HJ, Kim J, Kim TH, Lee W-J, Jeon B-G, Park J-Y, Choi WS, Jeong DW, Lee SH, Yu J, Noh TW, Kim KH (2013) Indications of strong neutral impurity scattering in Ba(Sn, Sb)O3single crystals. Phys Rev B 88:125204

    Article  Google Scholar 

  9. Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632–633

    Article  Google Scholar 

  10. Moss TS (1954) The interpretation of the properties of indium antimonide. Proc Phys Soc Sect B 67:775–782

    Article  Google Scholar 

  11. Schmid PE (1981) Optical absorption in heavily doped silicon. Phys Rev B 23:5531–5536

    Article  Google Scholar 

  12. Wang Y, Tang W, Zhu J, Liu J (2015) Strain induced change of band structure and electron effective mass in wurtzite ZnO: a first-principles study. Comput Mater Sci 99:145–149

    Article  Google Scholar 

  13. Hou Q, Xi D, Li W, Jia X, Xu Z (2018) First-principles research on the optical and electrical properties and mechanisms of In-doped ZnO. Physica B 537:258–266

    Article  Google Scholar 

  14. Steinhauser J, Faÿ S, Oliveira N, Vallat-Sauvain E, Ballif C (2007) Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl Phys Lett 90:142107

    Article  Google Scholar 

  15. Kim Y, Lee W, Jung D-R, Kim J, Nam S, Kim H, Park B (2010) Optical and electronic properties of post-annealed ZnO: Al thin films. Appl Phys Lett 96:171902

    Article  Google Scholar 

  16. Yamada T, Makino H, Yamamoto N, Yamamoto T (2010) Ingrain and grain boundary scattering effects on electron mobility of transparent conducting polycrystalline Ga-doped ZnO films. J Appl Phys 107:123534

    Article  Google Scholar 

  17. Wang Y, Zhu J, Tang W (2014) Extracting the effective mass of electrons in transparent conductive oxide thin films using Seebeck coefficient. Appl Phys Lett 104:212103

    Article  Google Scholar 

  18. Pisarkiewicz T, Zakrzewska K, Leja E (1989) Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band. Thin Solid Films 174:217–223

    Article  Google Scholar 

  19. Park JB, Park SH, Song PK (2010) Electrical and structural properties of In-doped ZnO films deposited by RF superimposed DC magnetron sputtering system. J Phys Chem Solids 71:669–672

    Article  Google Scholar 

  20. Tirumalareddygari SR, Guddeti PR, Ramakrishna Reddy KT (2018) A critical study of the optical and electrical properties of transparent and conductive Mo-doped ZnO films by adjustment of Mo concentration. Appl Surf Sci 458:333–343

    Article  Google Scholar 

  21. Debanath MK, Karmakar S (2013) Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater Lett 111:116–119

    Article  Google Scholar 

  22. Koidis C, Logothetidis S, Kassavetis S, Laskarakis A, Hastas NA, Valassiades O (2010) Growth mechanisms and thickness effect on the properties of Al-doped ZnO thin films grown on polymeric substrates. Phys Status Solidi (a) 207:1581–1585

    Article  Google Scholar 

  23. Raoufi D, Eftekhari L (2015) Crystallography and morphology dependence of In2O3: Sn thin films on deposition rate. Surf Coat Technol 274:44–50

    Article  Google Scholar 

  24. Li Y, Huang Q, Bi X (2013) The change of electrical transport characterizations in Ga doped ZnO films with various thicknesses. J Appl Phys 113:053702

    Article  Google Scholar 

  25. Jia J, Takasaki A, Oka N, Shigesato Y (2012) Experimental observation on the Fermi level shift in polycrystalline Al-doped ZnO films. J Appl Phys 112:013718

    Article  Google Scholar 

  26. Kim JS, Jeong JH, Park JK, Baik YJ, Kim IH, Seong TY, Kim WM (2012) Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters. J Appl Phys 111:123507

    Article  Google Scholar 

  27. Singh AV, Mehra RM, Yoshida A, Wakahara A (2004) Doping mechanism in aluminum doped zinc oxide films. J Appl Phys 95:3640–3643

    Article  Google Scholar 

  28. Fujiwara H, Kondo M (2005) Effects of carrier concentration on the dielectric function of ZnO: Ga andIn2O3: Snstudied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption. Phys Rev B 71:075109

    Article  Google Scholar 

  29. Liu X, Park J, Kang J-H, Yuan H, Cui Y, Hwang HY, Brongersma ML (2014) Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl Phys Lett 105:181117

    Article  Google Scholar 

  30. Gondorf A, Geller M, Weißbon J, Lorke A, Inhester M, Prodi-Schwab A, Adam D (2011) Mobility and carrier density in nanoporous indium tin oxide films. Phys Rev B 83:212201

    Article  Google Scholar 

  31. Song H, Makino H, Nomoto J, Yamamoto N, Yamamoto T (2018) Improved moisture stability of thin Ga-doped ZnO films by indium codoping. Appl Surf Sci 457:241–246

    Article  Google Scholar 

  32. Wang Y, Tang W, Zhang L, Zhao J (2014) Electron concentration dependence of optical band gap shift in Ga-doped ZnO thin films by magnetron sputtering. Thin Solid Films 565:62–68

    Article  Google Scholar 

  33. Lu JG, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye ZZ, Zeng YJ, Zhang YZ, Zhu LP, He HP, Zhao BH (2007) Carrier concentration dependence of band gap shift in n-type ZnO: Al films. J Appl Phys 101:083705

    Article  Google Scholar 

  34. Sans JA, Sánchez-Royo JF, Segura A, Tobias G, Canadell E (2009) Chemical effects on the optical band-gap of heavily doped ZnO: M (M = Al, Ga, In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations. Phys Rev B 79:195105

    Article  Google Scholar 

  35. Hung-Chun Lai H, Basheer T, Kuznetsov VL, Egdell RG, Jacobs RMJ, Pepper M, Edwards PP (2012) Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis. J Appl Phys 112:083708

    Article  Google Scholar 

  36. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37:10244–10248

    Article  Google Scholar 

  37. Jain SC, McGregor JM, Roulston DJ (1990) Band-gap narrowing in novel III–V semiconductors. J Appl Phys 68:3747–3749

    Article  Google Scholar 

  38. Wang Y, Tang W, Liu J, Zhang L (2015) Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study. Appl Phys Lett 106:162101

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Specialty Construction Project of Clinical Pharmacy (Grant No. 30305030698).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyou Shi or Wu Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, C., Shi, J. & Tang, W. The measured essentiality of electron effective mass on electron transport behavior and optical band gap in Ga-doped ZnO thin films. J Mater Sci 54, 12659–12667 (2019). https://doi.org/10.1007/s10853-019-03775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03775-3

Navigation