Skip to main content

Advertisement

Log in

Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the Ni3S2 multiple structures are prepared on Ni foam (Ni3S2@NF) by a mass production one-step hydrothermal method. The prepared Ni3S2@NF multi-structured materials can expose more electroactive sites for fast electron transport owing to their intimate contact with electrolyte. By precisely controlling the proportion of glycerin in the reaction solution, the desired Ni3S2@NF core–shell structure can be synthesized with a high specific capacitance of 736.64 F g−1 at 0.8 A g−1 (7.36 F cm−2 at 8 mA cm−2), which is about one order of magnitude higher than other structures. The role of glycerin for controlling the sample morphology is attributed to its ability to absorb hydrogen sulfide for further reaction to produce nano-sized Ni3S2 structures. The Ni3S2@NF core–shell sample also exhibits good cycling stability of 82% after 1000 cycles. This is because the intertwined nanostructures can accelerate ion transport and protect internal Ni3S2 from degrading. Our work provides a new and efficient mass production method for obtaining energy storage materials with micro-sheet and nano-plated multiple structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li J, Chen S, Zhu X, She X, Liu T, Zhang H, Komarneni S, Yang D, Yao X (2017) Toward aerogel electrodes of superior rate performance in supercapacitors through engineered hollow nanoparticles of NiCo2O4. Adv Sci 4:1700345

    Article  Google Scholar 

  2. Zhan R, Shen B, Xu Q, Zhang Y, Luo Y, Liu H, Chen H, Liu F, Li C, Xu M (2018) Half-cell and full-cell applications of sodium ion batteries based on carbon-coated Na3Fe0.5V1.5(PO4)3 nanoparticles cathode. Electrochim Acta 283:1475–1481

    Article  Google Scholar 

  3. Miao L, Zhu D, Liu M, Duan H, Wang Z, Lv Y, Xiong W, Zhu Q, Li L, Chai X, Gan L (2018) Cooking carbon with protic salt: nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chem Eng J 347:233–242

    Article  Google Scholar 

  4. Zhang F, Xiao F, Dong ZH, Shi W (2013) Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes. Electrochim Acta 114:125–132

    Article  Google Scholar 

  5. Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006

    Article  Google Scholar 

  6. Kim D, Lee K, Kim M, Kim Y, Lee H (2019) Carbon-based asymmetric capacitor for high-performance energy storage devices. Electrochim Acta 300:461–469

    Article  Google Scholar 

  7. Huang J, Sumpter BG, Meunier V (2008) A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem-Eur J 14:6614–6626

    Article  Google Scholar 

  8. Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9:5310–5317

    Article  Google Scholar 

  9. Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P (2015) Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew Chem Int Edit 54:4651–4656

    Article  Google Scholar 

  10. Chen JS, Guan C, Gui Y, Blackwood DJ (2017) Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interface 9:496–504

    Article  Google Scholar 

  11. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ (2014) One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J 251:116–122

    Article  Google Scholar 

  12. Wang Z, Nan C, Wang D, Li Y (2014) Fabrication of 1D nickel sulfide nanocrystals with high capacitances and remarkable durability. RSC Adv 4:47513–47516

    Article  Google Scholar 

  13. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A 5:8155–8186

    Article  Google Scholar 

  14. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    Article  Google Scholar 

  15. Vernardou D, Sapountzis A, Spanakis E, Kenanakis G, Koudoumas E, Katsarakis N (2013) Electrochemical activity of electrodeposited V2O5 coatings. J Electrochem Soc 160:D6–D9

    Article  Google Scholar 

  16. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  Google Scholar 

  17. Balogun M-S, Qiu W, Luo Y, Meng H, Mai W, Onasanya A, Olaniyi TK, Tong Y (2016) A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res 9:2823–2851

    Article  Google Scholar 

  18. Gou J, Xie S, Liu Y, Liu C (2016) Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials. Electrochim Acta 210:915–924

    Article  Google Scholar 

  19. Su D, McDonagh A, Qiao S-Z, Wang G (2017) High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater 29:1604007

    Article  Google Scholar 

  20. Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44:5926–5940

    Article  Google Scholar 

  21. Wei X, Li Y, Peng H, Zhou M, Ou Y, Yang Y, Zhang Y, Xiao P (2018) Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem Eng J 341:618–627

    Article  Google Scholar 

  22. Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9:1299–1307

    Article  Google Scholar 

  23. Wu Q, Xu J, Yang X, Lu F, He S, Yang J, Fan HJ, Wu M (2015) Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries. Adv Energy Mater 5:1401756

    Article  Google Scholar 

  24. Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472

    Article  Google Scholar 

  25. Lokhande CD, Dubal DP, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  26. Li Z, Shao M, Zhou L, Zhang R, Zhang C, Han J, Wei M, Evans DG, Duan X (2016) A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy 20:294–304

    Article  Google Scholar 

  27. Wang L, Ouyang Y, Jiao X, Xia X, Lei W, Hao Q (2018) Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem Eng J 334:1–9

    Article  Google Scholar 

  28. Zhao C, Chen S, Chen W, Yang Y, Cao Q (2013) Molybdenum compounds supported on ordered mesoporous carbon and their influence on the supercapacitive properties. ECS Solid State Lett 2:M29–M32

    Article  Google Scholar 

  29. Lee P-Y, Lin L-Y (2019) Synthesizing nickel-based transition bimetallic oxide via nickel precursor-free hydrothermal synthesis for battery supercapacitor hybrid devices. J Colloid Interface Sci 538:297–307

    Article  Google Scholar 

  30. Chauhan H, Singh MK, Hashmi SA, Deka S (2015) Synthesis of surfactant-free SnS nanorods by a solvothermal route with better electrochemical properties towards supercapacitor applications. RSC Adv 5:17228–17235

    Article  Google Scholar 

  31. Li B, Zheng M, Xue H, Pang H (2016) High performance electrochemical capacitor materials focusing on nickel based materials. Inorg Chem Front 3:175–202

    Article  Google Scholar 

  32. Huo H, Zhao Y, Xu C (2014) 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A 2:15111–15117

    Article  Google Scholar 

  33. Li Z, Han J, Fan L, Guo R (2015) Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors. CrystEngComm 17:1952–1958

    Article  Google Scholar 

  34. Li Z-X, Yang B-L, Jiang Y-F, Yu C-Y, Zhang L (2018) Metal-directed assembly of five 4-connected MOFs: one-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors. Cryst Growth Des 18:979–992

    Article  Google Scholar 

  35. Sun C, Ma M, Yang J, Zhang Y, Chen P, Huang W, Dong X (2014) Phase-controlled synthesis of alpha-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep 4:7054

    Article  Google Scholar 

  36. Wang H, Liang M, Duan D, Shi W, Song Y, Sun Z (2018) Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J 350:523–533

    Article  Google Scholar 

  37. He Q, Wang Y, Liu XX, Blackwood DJ, Chen JS (2018) One-pot synthesis of self-supported hierarchical urchin-like Ni3S2 with ultrahigh areal pseudocapacitance. J Mater Chem A 6:22115–22122

    Article  Google Scholar 

  38. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ (2014) One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J 251:116–122

    Article  Google Scholar 

  39. Wang Q, Gao R, Li J (2007) Porous, self-supported Ni3S2/Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Appl Phys Lett 90:143107

    Article  Google Scholar 

  40. Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259

    Article  Google Scholar 

  41. Ji F, Jiang D, Chen X, Pan X, Kuang L, Zhang Y, Alameh K, Ding B (2017) Simple in situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors. Appl Surf Sci 399:432–439

    Article  Google Scholar 

  42. Su C-W, Li J-M, Yang W, Guo J-M (2014) Electrodeposition of Ni3S2/Ni composites as high-performance cathodes for lithium batteries. J Phys Chem C 118:767–773

    Article  Google Scholar 

  43. Wang M, Wang Y, Dou H, Wei G, Wang X (2016) Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode. Ceram Int 42:9858–9865

    Article  Google Scholar 

  44. Chen JS, Gui Y, Blackwood DJ (2016) Self-supported phase-pure Ni3S2 sheet-on-rod nanoarrays with enhanced pseudocapacitive properties and high energy density. J Power Sources 325:575–583

    Article  Google Scholar 

  45. Chen JS, Ren J, Shalom M, Fellinger T, Antoniettit M (2016) Stainless steel mesh-supported NiS nanosheet array as highly efficient catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces 8:5509–5516

    Article  Google Scholar 

  46. Zhu YP, Ma TY, Jaroniec M, Qiao SZ (2017) Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew Chem Int Edit 56:1324–1328

    Article  Google Scholar 

  47. Xu J, Sun Y, Lu M, Wang L, Zhang J, Liu X (2019) One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci China Mater 62:699–710

    Article  Google Scholar 

  48. Chou S-W, Lin J-Y (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc 160:D178–D182

    Article  Google Scholar 

  49. Ni S, Yang X, Li T (2012) Fabrication of porous Ni3S2/Ni nanostructured electrode and its application in lithium ion battery. Mater Chem Phys 132:1103–1107

    Article  Google Scholar 

  50. Tong S, Lu T, Guo W (2007) Synthesis of YAG powder by alcohol-water co-precipitation method. Mater Lett 61:4287–4289

    Article  Google Scholar 

  51. Xu GG, Zhang XD, He W, Liu H, Li H, Boughton RI (2006) Preparation of highly dispersed YAG nano-sized powder by co-precipitation method. Mater Lett 60:962–965

    Article  Google Scholar 

  52. Xing Z, Chu Q, Ren X, Ge C, Qusti AH, Asiri AM, Al-Youbi AO, Sun X (2014) Ni3S2 coated ZnO array for high-performance supercapacitors. J Power Sources 245:463–467

    Article  Google Scholar 

  53. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim Acta 56:732–736

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11604074, 11874013, and 11804075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junguang Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Guan, L. & Tao, J. Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances. J Mater Sci 54, 12737–12746 (2019). https://doi.org/10.1007/s10853-019-03808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03808-x

Navigation