Skip to main content
Log in

MoO3 nanobelts for high-performance asymmetric supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study reports on MoO3 nanobelts as electrode material for high-performance supercapacitors. We find MoO3 nanobelts electrode exhibits a higher specific capacitance than MoO3 microrods electrode. Thus, an asymmetric supercapacitor utilizing the as-prepared MoO3 nanobelts as the positive electrode material and the carbon nanosheets as the negative electrode material achieves an impressive performance with an energy density of 25.69 Wh kg−1 at a power density of 1482.25 W kg−1. We further reveal that the exposed (010) facets in the crystalline MoO3 nanobelts might mainly contribute to its electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Miller J, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  Google Scholar 

  2. Conway B (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138:1539–1548

    Article  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  4. Mai L, Yang F, Zhao Y et al (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381

    Article  Google Scholar 

  5. Li S, Huang D, Yang J et al (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317

    Article  Google Scholar 

  6. Li S, Huang D, Zhang B et al (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 4:1301655

    Article  Google Scholar 

  7. Lin T, Chen W, Liu F et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513

    Article  Google Scholar 

  8. Wei W, Cui X, Chen W et al (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  Google Scholar 

  9. Yin B, Zhang S, Ren Q et al (2017) Elastic soft hydrogel supercapacitor for energy storage. J Mater Chem A 5:24942–24950

    Article  Google Scholar 

  10. Zhang S, Yin B, Liu C et al (2018) A lightweight, compressible and portable sponge-based supercapacitor or future power supply. Chem Eng J 349:509–521

    Article  Google Scholar 

  11. Snook G, Kao P, Best A (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  Google Scholar 

  12. Zhang S, Yin B, Liu X et al (2019) A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59:41–49

    Article  Google Scholar 

  13. Xu C, Li Z, Yang C et al (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:4105–4110

    Article  Google Scholar 

  14. Hall P, Mirzaeian M, Fletcher S et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  Google Scholar 

  15. Yu Z, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Environ Sci 8:702–730

    Google Scholar 

  16. Shao Y, El-Kady M, Sun J et al (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

    Article  Google Scholar 

  17. Xiao X, Peng Z, Chen C et al (2014) Freestanding MoO3-x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9:355–363

    Article  Google Scholar 

  18. Du P, Wei W, Liu D et al (2018) Fabrication of hierarchical MoO3-PPy core-shell nanobelts and “worm-like” MWNTs-MnO2 core-shell materials for high-performance asymmetric supercapacitor. J Mater Sci 53:5255–5269. https://doi.org/10.1007/s10853-017-1927-3

    Article  Google Scholar 

  19. Liu T, Pell W, Conway B (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42:3541–3552

    Article  Google Scholar 

  20. Zhao X, Sánchez B, Dobson P et al (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855

    Article  Google Scholar 

  21. Liang Y, Li H, Zhang X et al (2007) Solid state synthesis of hydrous ruthenium oxide for supercapacitors. J Power Sources 173:599–605

    Article  Google Scholar 

  22. Tao T, Chen Q, Hu H et al (2012) MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Mater Lett 66:102–105

    Article  Google Scholar 

  23. Sánchez B, Brousse T, Castro C et al (2013) An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260

    Article  Google Scholar 

  24. Smith R, Rohrer G (1996) Scanning probe microscopy of cleaved molybdates: α-MoO3(010), Mo18O52(100), Mo8O23(010), and h-Mo4O11(100). J Solid State Chem 124:104–115

    Article  Google Scholar 

  25. Shakir I, Sarfraz M (2014) Evaluation of electrochemical charge storage mechanism and structural changes in intertwined MoO3-MWCNTs composites for supercapacitor applications. Electrochim Acta 147:380–384

    Article  Google Scholar 

  26. Li J, Liu X (2013) Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Mater Lett 112:39–42

    Article  Google Scholar 

  27. Hanlon D, Backes C, Higgins T et al (2014) Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chem Mater 26:1751–1763

    Article  Google Scholar 

  28. Qu Q, Li L, Tian S et al (2010) A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2·0.6H2O. J Power Sources 195:2789–2794

    Article  Google Scholar 

  29. Gao H, Xiao F, Ching C et al (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810

    Article  Google Scholar 

  30. Wang T, Chen H, Yu F et al (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater 16:545–573

    Article  Google Scholar 

  31. Lunk H, Hartl H, Hartl M et al (2010) “Hexagonal molybdenum trioxide”- known for 100 years and still a fount of new discoveries. Inorg Chem 49:9400–9408

    Article  Google Scholar 

  32. Shakir I, Shahid M, Rana U et al (2014) In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors. RSC Adv 4:8741–8745

    Article  Google Scholar 

  33. Tang W, Liu L, Tian S et al (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060

    Article  Google Scholar 

  34. Ahmed B, Shahid M, Nagaraju D et al (2015) Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable Li ion battery anodes. ACS Appl Mater Interfaces 7:13154–13163

    Article  Google Scholar 

  35. Wang Z, Madhavi S, Lou X et al (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513

    Article  Google Scholar 

  36. Ji H, Liu X, Liu Z et al (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894

    Article  Google Scholar 

  37. Gao L, Li S, Huang D et al (2015) ZnO decorated TiO2 nanosheet composites for lithium ion battery. Electrochim Acta 182:529–536

    Article  Google Scholar 

  38. Gao L, Huang D, Shen Y et al (2015) Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J Mater Chem A 3:23570–23576

    Article  Google Scholar 

  39. Gao L, Li S, Huang D et al (2015) Porous Li4Ti5O12–TiO2 nanosheet arrays for high performance lithium-ion batteries. J Mater Chem A 3:10107–10113

    Article  Google Scholar 

  40. Zhou C, Zhang Y, Li Y et al (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  Google Scholar 

  41. Gao L, Hu H, Li G et al (2014) Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 6:6463–6467

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS031) and the Director Fund of the WNLO. We thank the facility support of the Analytical and Testing Centre at Huazhong University of Science and Technology and the Center for Nanoscale Characterization and Devices of WNLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gao, L., Wang, J. et al. MoO3 nanobelts for high-performance asymmetric supercapacitor. J Mater Sci 54, 13685–13693 (2019). https://doi.org/10.1007/s10853-019-03836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03836-7

Navigation