MoO3 nanobelts for high-performance asymmetric supercapacitor

  • 1126 Accesses

  • 2 Citations


This study reports on MoO3 nanobelts as electrode material for high-performance supercapacitors. We find MoO3 nanobelts electrode exhibits a higher specific capacitance than MoO3 microrods electrode. Thus, an asymmetric supercapacitor utilizing the as-prepared MoO3 nanobelts as the positive electrode material and the carbon nanosheets as the negative electrode material achieves an impressive performance with an energy density of 25.69 Wh kg−1 at a power density of 1482.25 W kg−1. We further reveal that the exposed (010) facets in the crystalline MoO3 nanobelts might mainly contribute to its electrochemical performance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

34,95 €

Price includes VAT for Germany

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

133,97 €

Price includes VAT for Germany

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1

    Miller J, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

  2. 2

    Conway B (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138:1539–1548

  3. 3

    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

  4. 4

    Mai L, Yang F, Zhao Y et al (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381

  5. 5

    Li S, Huang D, Yang J et al (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317

  6. 6

    Li S, Huang D, Zhang B et al (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 4:1301655

  7. 7

    Lin T, Chen W, Liu F et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513

  8. 8

    Wei W, Cui X, Chen W et al (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

  9. 9

    Yin B, Zhang S, Ren Q et al (2017) Elastic soft hydrogel supercapacitor for energy storage. J Mater Chem A 5:24942–24950

  10. 10

    Zhang S, Yin B, Liu C et al (2018) A lightweight, compressible and portable sponge-based supercapacitor or future power supply. Chem Eng J 349:509–521

  11. 11

    Snook G, Kao P, Best A (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

  12. 12

    Zhang S, Yin B, Liu X et al (2019) A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59:41–49

  13. 13

    Xu C, Li Z, Yang C et al (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:4105–4110

  14. 14

    Hall P, Mirzaeian M, Fletcher S et al (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

  15. 15

    Yu Z, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Environ Sci 8:702–730

  16. 16

    Shao Y, El-Kady M, Sun J et al (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

  17. 17

    Xiao X, Peng Z, Chen C et al (2014) Freestanding MoO3-x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9:355–363

  18. 18

    Du P, Wei W, Liu D et al (2018) Fabrication of hierarchical MoO3-PPy core-shell nanobelts and “worm-like” MWNTs-MnO2 core-shell materials for high-performance asymmetric supercapacitor. J Mater Sci 53:5255–5269.

  19. 19

    Liu T, Pell W, Conway B (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42:3541–3552

  20. 20

    Zhao X, Sánchez B, Dobson P et al (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855

  21. 21

    Liang Y, Li H, Zhang X et al (2007) Solid state synthesis of hydrous ruthenium oxide for supercapacitors. J Power Sources 173:599–605

  22. 22

    Tao T, Chen Q, Hu H et al (2012) MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Mater Lett 66:102–105

  23. 23

    Sánchez B, Brousse T, Castro C et al (2013) An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260

  24. 24

    Smith R, Rohrer G (1996) Scanning probe microscopy of cleaved molybdates: α-MoO3(010), Mo18O52(100), Mo8O23(010), and h-Mo4O11(100). J Solid State Chem 124:104–115

  25. 25

    Shakir I, Sarfraz M (2014) Evaluation of electrochemical charge storage mechanism and structural changes in intertwined MoO3-MWCNTs composites for supercapacitor applications. Electrochim Acta 147:380–384

  26. 26

    Li J, Liu X (2013) Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Mater Lett 112:39–42

  27. 27

    Hanlon D, Backes C, Higgins T et al (2014) Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chem Mater 26:1751–1763

  28. 28

    Qu Q, Li L, Tian S et al (2010) A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2·0.6H2O. J Power Sources 195:2789–2794

  29. 29

    Gao H, Xiao F, Ching C et al (2012) High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl Mater Interfaces 4:2801–2810

  30. 30

    Wang T, Chen H, Yu F et al (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater 16:545–573

  31. 31

    Lunk H, Hartl H, Hartl M et al (2010) “Hexagonal molybdenum trioxide”- known for 100 years and still a fount of new discoveries. Inorg Chem 49:9400–9408

  32. 32

    Shakir I, Shahid M, Rana U et al (2014) In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors. RSC Adv 4:8741–8745

  33. 33

    Tang W, Liu L, Tian S et al (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060

  34. 34

    Ahmed B, Shahid M, Nagaraju D et al (2015) Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable Li ion battery anodes. ACS Appl Mater Interfaces 7:13154–13163

  35. 35

    Wang Z, Madhavi S, Lou X et al (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513

  36. 36

    Ji H, Liu X, Liu Z et al (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894

  37. 37

    Gao L, Li S, Huang D et al (2015) ZnO decorated TiO2 nanosheet composites for lithium ion battery. Electrochim Acta 182:529–536

  38. 38

    Gao L, Huang D, Shen Y et al (2015) Rutile-TiO2 decorated Li4Ti5O12 nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. J Mater Chem A 3:23570–23576

  39. 39

    Gao L, Li S, Huang D et al (2015) Porous Li4Ti5O12–TiO2 nanosheet arrays for high performance lithium-ion batteries. J Mater Chem A 3:10107–10113

  40. 40

    Zhou C, Zhang Y, Li Y et al (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

  41. 41

    Gao L, Hu H, Li G et al (2014) Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 6:6463–6467

Download references


This work was financially supported by the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS031) and the Director Fund of the WNLO. We thank the facility support of the Analytical and Testing Centre at Huazhong University of Science and Technology and the Center for Nanoscale Characterization and Devices of WNLO.

Author information

Correspondence to Yan Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2653 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gao, L., Wang, J. et al. MoO3 nanobelts for high-performance asymmetric supercapacitor. J Mater Sci 54, 13685–13693 (2019) doi:10.1007/s10853-019-03836-7

Download citation