Skip to main content
Log in

Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanomaterials based on Pd nanoparticles supported on Vulcan carbon (XC-72R) were prepared by the organometallic approach in one-pot and mild conditions (3 bar hydrogen and room temperature) using Pd(dba)2 (bis (dibenzylideneacetone) palladium (0)) as metal source and hexadecylamine (HDA) as stabilizer. High-resolution transmission electron microscopy (HR-TEM) evidenced the presence of well-dispersed Pd nanoparticles of ca. 4.5 nm mean size onto the carbon support (Pd/HDA/C). Scanning and transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) allowed to determine the chemical composition of the nanomaterials. When the Pd/HDA/C nanomaterial was submitted to heating treatment (ht) at 400 °C under air (referred as Pd/HDA/C@air-ht), X-ray photoelectron spectroscopy (XPS) and HR-TEM/STEM-EELS analyses suggested the presence of interactions between PdO and Pd(0) as a result of the formation of Pd@PdO core–shell nanoparticles. The highest oxidation current magnitude during methanol oxidation reaction is ascribed to the heat-treated material, linked with a better electron and mass transfer processes at the electrode interface. This can be attributed to electronic interactions at the core–shell formed, which might promote different redox processes at the electrode interface during CH3OH deprotonation in the alkaline electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Liu Q, Lin Y, Fan J, Lv D, Min Y, Wu T, Xu Q (2016) Well-dispersed palladium nanoparticles on three-dimensional hollow N-doped graphene frameworks for enhancement of methanol electro-oxidation. Electrochem Commun 73:75–79

    Article  Google Scholar 

  2. Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS (2014) Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru? Chem Rev 114:12397–12429

    Article  Google Scholar 

  3. Noroozifar M, Khorasani-Motlagh M, Ekrami-Kakhki MS, Khaleghian-Moghadam R (2014) Electrochemical investigation of Pd nanoparticles and MWCNTs supported Pd nanoparticles-coated electrodes for alcohols (C1–C3) oxidation in fuel cells. J Appl Electrochem 44:233–243

    Article  Google Scholar 

  4. Yin Z, Zheng H, Ma D, Bao X (2009) Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C 113:1001–1005

    Article  Google Scholar 

  5. Kannan P, Maiyalagan T, Opallo M (2013) One-pot synthesis of chain-like palladium nanocubes and their enhanced electrocatalytic activity for fuel-cell applications. Nano Energy 2:677–687

    Article  Google Scholar 

  6. Pan W, Zhang X, Ma H, Zhang J (2008) Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J Phys Chem C 112:2456–2461

    Article  Google Scholar 

  7. Ding K, Yang G, Wei S, Mavinakuli P, Guo Z (2010) Cyclic voltammetric preparation of palladium nanoparticles for ethanol oxidation reaction. Ind Eng Chem Res 49:11415–11420

    Article  Google Scholar 

  8. Cookson J (2012) The preparation of palladium nanoparticles. Platin Met Rev 56:83–98

    Article  Google Scholar 

  9. Erikson H, Sarapuu A, Solla-Gullón J, Tammeveski K (2016) Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts. J Electroanal Chem 780:327–336

    Article  Google Scholar 

  10. Ramirez E, Eradès L, Philippot K, Lecante P, Chaudret B (2007) Shape control of platinum nanoparticles. Adv Funct Mater 17:2219–2228

    Article  Google Scholar 

  11. Flanagan KA, Sullivan JA, Müeller-Bunz H (2007) Preparation and characterization of 4-dimethylaminopyridine-stabilized palladium nanoparticles. Langmuir 23:12508–12520

    Article  Google Scholar 

  12. Li Z, Gao J, Xing X, Wu S, Shuang S, Dong C, Paau MC, Choi MMF (2010) Synthesis and characterization of n-alkylamine-stabilized palladium nanoparticles for electrochemical oxidation of methane. J Phys Chem C 114:723–733

    Article  Google Scholar 

  13. Chen S, Huang K, Stearns JA (2000) Alkanethiolate-protected palladium nanoparticles. Chem Mater 12(2000):540–547

    Article  Google Scholar 

  14. Sadeghmoghaddam E, Lam C, Choi D, Shon Y-S (2011) Synthesis and catalytic properties of alkanethiolate-capped Pd nanoparticles generated from sodium S-dodecylthiosulfate. J Mater Chem 21:307–312

    Article  Google Scholar 

  15. Gupta D, Dutta D, Kumar M, Barman PB, Sarkar CK, Basu S, Hazra SK (2014) A low temperature hydrogen sensor based on palladium nanoparticles. Sens Actuators B Chem 196:215–222

    Article  Google Scholar 

  16. Yee CK, Jordan R, Ulman A, White H, King A, Rafailovich M, Sokolov J (1999) Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir 15:3486–3491

    Article  Google Scholar 

  17. Kim YG, Garcia-Martinez JC, Crooks RM (2005) Electrochemical properties of monolayer-protected Au and Pd nanoparticles extracted from within dendrimer templates. Langmuir 21:5485–5491

    Article  Google Scholar 

  18. Cliffel DE, Zamborini FP, Gross SM, Murray RW (2000) Mercaptoammonium-monolayer-protected, water-soluble gold, silver, and palladium clusters. Langmuir 16:9699–9702

    Article  Google Scholar 

  19. Niu W, Li ZY, Shi L, Liu X, Li H, Han S, Chen J, Xu G (2008) Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst Growth Des 8:4440–4444

    Article  Google Scholar 

  20. Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13:734–737

    Article  Google Scholar 

  21. Grigoriev SA, Millet P, Fateev VN (2008) Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J Power Sources 177:281–285

    Article  Google Scholar 

  22. Yamada M, Quiros I, Mizutani J, Kubo K, Nishihara H (2001) Preparation of palladium nanoparticles functionalized with biferrocene thiol derivatives and their electro-oxidative deposition. Phys Chem Chem Phys 3:3377–3381

    Article  Google Scholar 

  23. Kim S-W, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim YW (2003) Synthesis of monodisperse palladium nanoparticles. Nano Lett 3:1289–1291

    Article  Google Scholar 

  24. Mazumder V, Sun S (2009) Oleylamine-mediated synthesis of pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc 131:4588–4589

    Article  Google Scholar 

  25. Shi Y, Yin S, Ma Y, Lu D, Chen Y, Tang Y, Lu T (2014) Oleylamine-functionalized palladium nanoparticles with enhanced electrocatalytic activity for the oxygen reduction reaction. J Power Sources 246:356–360

    Article  Google Scholar 

  26. Góral-Kurbiel M, Drelinkiewicz A, Kosydar R, Dembińska B, Kulesza PJ, Gurgul J (2014) Palladium content effect on the electrocatalytic activity of palladium–polypyrrole nanocomposite for cathodic reduction of oxygen. Electrocatalysis 5:23–40

    Article  Google Scholar 

  27. Fu G, Jiang X, Tao L, Chen Y, Lin J, Zhou Y, Tang Y, Lu T (2013) Polyallylamine functionalized palladium icosahedra: one-pot water-based synthesis and their superior electrocatalytic activity and ethanol tolerant ability in alkaline media. Langmuir 29:4413–4420

    Article  Google Scholar 

  28. Zhao S, Zhang H, House SD, Jin R, Yang JC, Jin R (2016) Ultrasmall palladium nanoclusters as effective catalyst for oxygen reduction reaction. ChemElectroChem 3:1–6

    Article  Google Scholar 

  29. Naresh N, Wasim FGS, Ladewig BP, Neergat M (2013) Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J Mater Chem A 1:8553–8559

    Article  Google Scholar 

  30. Nalajala N, Gooty Saleha WF, Ladewig BP, Neergat M (2014) Sodium borohydride treatment: a simple and effective process for the removal of stabilizer and capping agents from shape-controlled palladium nanoparticles. Chem Commun 50:9365–9368

    Article  Google Scholar 

  31. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bultó AM, Chaudret B (2004) Influence of organic ligands on the stabilization of palladium nanoparticles. J Organomet Chem 689:4601–4610

    Article  Google Scholar 

  32. Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. J Am Chem Soc 126:1592–1593

    Article  Google Scholar 

  33. Guerrero M, García-Antón J, Tristany M, Pons J, Ros J, Philippot K, Lecante P, Chaudret B (2010) Design of new N, O hybrid pyrazole derived ligands and their use as stabilizers for the synthesis of Pd nanoparticles. Langmuir 26:15532–15540

    Article  Google Scholar 

  34. Siril PF, Lehoux A, Ramos L, Beaunier P, Remita H (2012) Facile synthesis of palladium nanowires by a soft templating method. New J Chem 36:2135–2139

    Article  Google Scholar 

  35. Jose D, Jagirdar BR (2010) Synthesis and characterization of Pd(0), PdS, and Pd@PdO core–shell nanoparticles by solventless thermolysis of a Pd–thiolate cluster. J Solid State Chem 183:2059–2067

    Article  Google Scholar 

  36. Cueva P, Hovden R, Mundy JA, Xin HL, Muller DA (2012) Data processing for atomic resolution electron energy loss spectroscopy. Microsc Microanal 18:667–675

    Article  Google Scholar 

  37. Egerton RF (1996) Electron energy loss spectroscopy in the electron microscope, 2nd edn. Plenum, New York

    Book  Google Scholar 

  38. Su PC, Chen HS, Chen TY, Liu CW, Lee CH, Lee JF, Chan TS, Wang KW (2013) Enhancement of electrochemical properties of Pd/C catalysts toward ethanol oxidation reaction in alkaline solution through Ni and Au alloying. Int J Hydrog Energy 38:4474–4482

    Article  Google Scholar 

  39. Xiong Y, Chen J, Wiley B, Xia Y, Yin Y, Li ZY (2005) Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett 5:1237–1242

    Article  Google Scholar 

  40. Jensen H, Pedersen JH, Jørgensen JE, Pedersen JS, Joensen KD, Iversen SB, Søgaard EG (2006) Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. J Exp Nanosci 1:355–373

    Article  Google Scholar 

  41. Dimitratos N, Lopez-Sanchez JA, Lennon D, Porta F, Prati L, Villa A (2006) Effect of particle size on monometallic and bimetallic (Au, Pd)/C on the liquid phase oxidation of glycerol. Catal Lett 108:147–153

    Article  Google Scholar 

  42. Roddatis V, Kuznetsov VL, Butenko YV, Su DS, Schlögl R (2002) Transformation of diamond nanoparticles into carbon onions under electron irradiation. Phys Chem Chem Phys 4:1964–1967

    Article  Google Scholar 

  43. Langenhors FT, Solozhenko VL (2002) ATEM-EELS study of new diamond-like phases in the B–C–N system. Phys Chem Chem Phys 4:5183–5188

    Article  Google Scholar 

  44. Uppireddi K, Resto O, Weiner BR, Morell G (2008) Iron oxide nanoparticles employed as seeds for the induction of microcrystalline diamond synthesis. Nanoscale Res Lett 3:65–70

    Article  Google Scholar 

  45. Waidmann S, Knupfer M, Fink J, Kleinsorge B, Robertson J (2001) Electronic structure studies of undoped and nitrogen-doped tetrahedral amorphous carbon using high-resolution electron energy-loss spectroscopy. J Appl Phys 89:3783–3792

    Article  Google Scholar 

  46. Chen W, Zhang Y, Wei X (2015) Catalytic performances of PdNi/MWCNT for electrooxidations of methanol and ethanol in alkaline media. Int J Hydrog Energy 40:1154–1162

    Article  Google Scholar 

  47. Tura JM, Regull P, Victori L, de Castellar MD (1988) XPS and IR (ATR) analysis of Pd oxide films obtained by electrochemical methods. Surf Interface Anal 11:447–449

    Article  Google Scholar 

  48. Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Gabasch H, Unterberger W, Hayek K, Klötzer B (2006) In situ XPS study of Pd(1 1 1) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf Sci 600:983–994

    Article  Google Scholar 

  49. Kim KS, Gossmann AF, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium–oxygen electrode. Anal Chem 46:197–200

    Article  Google Scholar 

  50. Voogt EH, Mens JM, Gijzeman OLJ, Geus JW (1996) XPS analysis of palladium oxide layers and particles. Surf Sci 350:21–31

    Article  Google Scholar 

  51. Jing JLV, Li S-S, Wang A-J, Mei L-P, Feng J-J, Chen J-R, Chen Z (2014) One-pot synthesis of monodisperse palladium–copper nanocrystals supported on reduced graphene oxide nanosheets with improved catalytic activity and methanol tolerance for oxygen reduction reaction. J Power Sources 269:104–110

    Article  Google Scholar 

  52. Bastl Z (1995) X-Ray photoelectron spectroscopic studies of palladium dispersed on carbon surfaces modified by ion beams and plasmatic oxidation. Collect Czech Chem Commun 60:383–392

    Article  Google Scholar 

  53. Moddeman WE, Bowling WC, Carter DC, Grove DR (1988) XPS surface and bulk studies of heat-treated palladium in the presence of hydrogen at 150 °C. Surf Interface Anal 11:317–326

    Article  Google Scholar 

  54. Evangelisti C, Panziera N, Pertici P, Vitulli G, Salvadori P, Battocchio C, Polzonetti G (2009) Palladium nanoparticles supported on polyvinylpyridine: catalytic activity in Heck-type reactions and XPS structural studies. J Catal 262:287–293

    Article  Google Scholar 

  55. Kibis LS, Stadnichenko AI, Koscheev SV, Zaikovskii VI, Boronin AI (2012) Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity. J Phys Chem C 116:19342–19348

    Article  Google Scholar 

  56. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie

    Google Scholar 

  57. Schmitz PJ, Otto K, de Vries JE (1992) An X-ray photoelectron spectroscopy investigation of palladium in automotive catalysts. Binding energies and reduction characteristics. Appl Catal A Gen 92:59–72

    Article  Google Scholar 

  58. Shafeev GA, Themlin JM, Bellard L, Marine W, Cros A (1996) Enhanced adherence of area-selective electroless metal plating on insulators. J Vac Sci Technol A 14:319–326

    Article  Google Scholar 

  59. Pillo T, Zimmermann R, Steiner P, Hüfner S (1997) The electronic structure of PdO found by photoemission (UPS and XPS) and inverse photoemission (BIS). J Phys Condens Matter 9:3987–3999

    Article  Google Scholar 

  60. Li DN, Wang AJ, Wei J, Zhang QL, Feng JJ (2018) Dentritic platinum–palladium/palladium core–shell nanocrystals/reduced graphene oxide: one-pot synthesis and excellent electrocatalytic performances. J Colloid Interface Sci 514:93–101

    Article  Google Scholar 

  61. Kibis LS, Titkov AI, Stadnichenko AI, Koscheev SV, Boronin AI (2009) X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl Surf Sci 255:9248–9254

    Article  Google Scholar 

  62. Wang F, Yu H, Tian Z, Xue H, Feng L (2018) Active sites contribution from nanostructured interface of palladium and cerium oxide with enhanced catalytic performance for alcohols oxidation in alkaline solution. J Energy Chem 27:395–403

    Article  Google Scholar 

  63. Liu L, Lin X-X, Zou S-Y, Wang A-J, Chen J-R, Feng J-J (2016) One-pot wet-chemical synthesis of PtPd@Pt nanocrystals supported on reduced graphene oxide with highly electrocatalytic performance for ethylene glycol oxidation. Electrochim Acta 187:576–583

    Article  Google Scholar 

  64. Légaré P, Finck F, Roche R, Maire G (1989) XPS investigation of the oxidation of the Al/Pd interface: the Al2O3/Pd interface. Surf Sci 217:167–178

    Article  Google Scholar 

  65. Lee H, Shin M, Lee M, Hwang YJ (2015) Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Appl Catal B Environ 165:20–26

    Article  Google Scholar 

  66. Bertolini JC, Delichere P, Khanra BC, Massardier J, Noupa C, Tardy B (1990) Electronic properties of supported Pd aggregates in relation with their reactivity for 1,3-butadiene hydrogenation. Catal Lett 6:215–224

    Article  Google Scholar 

  67. Tressaud A, Khairoun S, Touhara H, Watanabe N (1986) X-ray photoelectron spectroscopy of palladium fluorides. Z Anorg Allg Chem 540(541):291–299

    Article  Google Scholar 

  68. Fleisch TH, Zajac GW, Schreiner JO, Mains GJ (1986) An XPS study of the UV photoreduction of transition and noble metal oxides. Appl Surf Sci 26:488–497

    Article  Google Scholar 

  69. Boronin AI, Slavinskaya EM, Danilova IG, Gulyaev RV, Amosov YI, Kuznetsov PA, Polukhina IA, Koscheev SV, Zaikovskii VI, Noskov AS (2009) Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal Today 144:201–211

    Article  Google Scholar 

  70. Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Rainer A (2018) PdO/PdO2 functionalized ZnO: Pd films for lower operating temperature H2 gas sensing. Nanoscale 10:14107–14127

    Article  Google Scholar 

  71. Guimarães AL, Dieguez LC, Schmal M (2003) Surface sites of Pd/CeO2/Al2O3 catalysts in the partial oxidation of propane. J Phys Chem B 107:4311–4319

    Article  Google Scholar 

  72. Peuckert M (1985) XPS study on surface and bulk palladium oxide, its thermal stability, and a comparison with other noble metal oxides. J Phys Chem 89:2481–2486

    Article  Google Scholar 

  73. Bespalov I, Datler M, Buhr S, Drachsel W, Rupprechter G, Suchorski Y (2015) Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM and XPS study. Ultramicroscopy 159:147–151

    Article  Google Scholar 

  74. Jiang B, Song S, Wang J, Xie Y, Chu W, Li H, Xu H, Tian C, Fu H (2014) Nitrogen-doped graphene supported Pd@PdO core–shell clusters for C–C coupling reactions. Nano Res 7:1280–1290

    Article  Google Scholar 

  75. Davi M, Keßler D, Slabon A (2016) Electrochemical oxidation of methanol and ethanol on two-dimensional self-assembled palladium nanocrystal arrays. Thin Solid Films 615:221–225

    Article  Google Scholar 

  76. Grdeń M, Czerwiński A (2008) EQCM studies on Pd–Ni alloy oxidation in basic solution. J Solid State Electrochem 12:375–385

    Article  Google Scholar 

  77. Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54:2203–2208

    Article  Google Scholar 

  78. Lukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11:4442–4469

    Article  Google Scholar 

  79. Correia AN, Mascaro LH, Machado SAS, Avaca LA (1997) Active surface area determination of Pd–Si alloys by H-adsorption. Electrochim Acta 42:493–495

    Article  Google Scholar 

  80. Elezovic NR, Zabinski P, Ercius P, Wytrwal M, Radmilovic VR, Lačnjevac UC, Krstajic NV (2017) High surface area Pd nanocatalyst on core–shell tungsten based support as a beneficial catalyst for low temperature fuel cells application. Electrochim Acta 247:674–684

    Article  Google Scholar 

  81. Soleimani-Lashkenari M, Rezaei S, Fallah J, Rostami H (2018) Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media. Synth Met 235:71–79

    Article  Google Scholar 

  82. Ng JC, Tan CY, Ong BH, Matsuda A (2017) Effect of synthesis methods on methanol oxidation reaction on reduced graphene oxide supported palladium electrocatalysts. Procedia Eng 184:587–594

    Article  Google Scholar 

  83. Vidaković T, Christov M, Sundmacher K (2007) The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim Acta 52:5606–5613

    Article  Google Scholar 

  84. Zadick A, Dubau L, Demirci UB, Chatenet M (2016) Effects of Pd nanoparticle size and solution reducer strength on Pd/C electrocatalyst stability in alkaline electrolyte. J Electrochem Soc 163:F781–F787

    Article  Google Scholar 

  85. Bäumer M, Libuda J, Neyman KM, Rösch N, Rupprechter G, Freund HJ (2007) Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Phys Chem Chem Phys 9:3541–3558

    Article  Google Scholar 

  86. Chausse V, Regull P, Victori L (1987) Formation of a higher palladium oxide in the oxygen evolution potential range. J Electroanal Chem 238:115–128

    Article  Google Scholar 

  87. Grdeń M, Łukaszewski M, Jerkiewicz G, Czerwiński A (2008) Electrochemical behavior of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598

    Article  Google Scholar 

  88. Štrbac S, Maksić A, Rakočević Z (2018) Methanol oxidation on Ru/Pd(poly) in alkaline solution. J Electroanal Chem 823:161–170

    Article  Google Scholar 

  89. Coutanceau C, Demarconnay L, Lamy C, Léger JM (2006) Development of electrocatalysts for solid alkaline fuel cell (SAFC). J Power Sources 156:14–19

    Article  Google Scholar 

  90. Wang H, Sheng L, Zhao X, An K, Ou Z, Fang Y (2018) One-step synthesis of Pt–Pd catalyst nanoparticles supported on few-layer graphene for methanol oxidation. Curr Appl Phys 18:898–904

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by CONACyT (Project 157613, 247208), Instituto Politécnico Nacional (COFAA, BEIFI-IPN-20180430) and SNI-CONACyT, Dirección de Investigación-Universidad Iberoamericana (UIA) F132021 project, C. Juárez-Balderas from the Departamento de Estudios en Ingeniería para la Innovación (UIA) for the heat treatments and fruitful comments, R. Borja-Urby from the Centro de Nanociencias y Micro Nanotecnologías (CNMN) and 2015 CONACyT–SEP basic research Project 257931 for HR-TEM/STEM-EELS analyses. This collaborative research was also conducted in the framework of the French-Mexican International Laboratory (LIA) devoted to Molecular Chemistry and its applications in Materials and Catalysis funded by CNRS and CONACyT. LPA G-O thanks the financial support from CONACyT within Doctor Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Ramírez-Meneses or A. Manzo-Robledo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Ortega, L.P.A., Ramírez-Meneses, E., Cabrera-Sierra, R. et al. Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction. J Mater Sci 54, 13694–13714 (2019). https://doi.org/10.1007/s10853-019-03843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03843-8

Navigation