Skip to main content

Advertisement

Log in

Realizing high thermoelectric performance in p-type RbZn4P3 Zintl compound: a first-principles investigation

  • Computational Materials Design
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work presents structural, elastic, electronic, and thermoelectric properties of a tetragonal Zintl compound RbZn4P3, using the Density Functional Theory and Boltzmann transport equation. The computed structural parameters and bond lengths agree well with available experimental data. We use the density functional perturbation theory approach to obtain the Phonon dispersion curve to prove its dynamical stability. The charge density analysis confirms the coexistence of ionic and covalent bonding in the system. The calculated electronic structure shows the semiconducting nature of RbZn4P3 with a direct bandgap of 1.02 eV using the TB-mBJ approach. We analyze its thermoelectric properties for various hole doping concentrations at different temperatures (300 K-700 K). We obtained a high value of Seebeck coefficient (760.00 μVK−1) at 700 K and (641.72 μVK−1) at 300 K. The lattice thermal conductivity is estimated using Slack’s equation to get the true value of total thermal conductivity. We obtain an ultra-low total thermal conductivity, which in conjunction with high power factor, results in enhanced thermoelectric efficiency or figure of merit (ZT). The maximum ZT value is found to be 0.78 for optimum hole doping concentration of 2 × 1020 cm−3 at 700 K. This study reveals that RbZn4P3 possesses excellent potential as thermoelectric energy harvesting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tong C (2019) Emerging materials for energy harvesting. Introduction to materials for advanced energy systems. Springer, Cham, pp 719–817

    Chapter  Google Scholar 

  2. Mori T, Priya S (2018) Materials for energy harvesting: At the forefront of a new wave. MRS Bull 43:176–180. https://doi.org/10.1557/mrs.2018.32

    Article  Google Scholar 

  3. Zareef F, Rashid M, Ahmadini AAH, Alshahrani T, Kattan NA, Laref A (2021) Optoelectronic and thermoelectrical and mechanical properties of CdLu2X4 (X = S, Se) using first-principles calculations for energy harvesting applications. Mater Sci Semicond Process 127:105695. https://doi.org/10.1016/j.mssp.2021.105695

    Article  CAS  Google Scholar 

  4. Cai Q, Zhu S (2022) The nexus between vibration-based energy harvesting and structural vibration control: a comprehensive review. Renew Sust Energ Rev 155:111920. https://doi.org/10.1016/j.rser.2021.111920

    Article  Google Scholar 

  5. Safaei M, Sodano HA, Anton SR (2019) A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mater Struct 28:113001. https://doi.org/10.1088/1361-665X/ab36e4

    Article  CAS  Google Scholar 

  6. Roknuzzaman M, Ostrikov KK, Wang H, Du A, Tesfamichael T (2017) Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-13172-y

    Article  CAS  Google Scholar 

  7. Tritt TM, Subramanian MA (2020) Thermoelectric Materials. Phenom Appl A Bird’s Eye View 31:188–197. https://doi.org/10.1557/mrs2006.44

    Article  Google Scholar 

  8. Tan G, Ohta M, Kanatzidis MG (2019) Thermoelectric power generation: From new materials to devices. Philos Trans R Soc A Math Phys Eng Sci 377:20180450. https://doi.org/10.1098/rsta.2018.0450

    Article  CAS  Google Scholar 

  9. Bell LE (2008) Cooling, heating, generating heat with and recovering waste thermoelectric. Science 321:1457–1461. https://doi.org/10.1126/science.1158899

    Article  CAS  Google Scholar 

  10. Pei Y, Lalonde AD, Heinz NA, Shi X, Iwanaga S, Wang H, Chen L, Snyder GJ (2011) Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv Mater 23:5674–5678. https://doi.org/10.1002/adma.201103153

    Article  CAS  Google Scholar 

  11. Slack GA (1995) CRC Handbook of thermoelectrics—CRC Press Book. In: Handbook of thermoelectrics

  12. MehdizadehDehkordi A, Zebarjadi M, He J, Tritt TM (2015) Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater Sci Eng R Reports 97:1–22. https://doi.org/10.1016/j.mser.2015.08.001

    Article  Google Scholar 

  13. Yang J, Xi L, Qiu W et al (2016) On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory-experiment perspective, npj Comput Mater 2:15015. Doi: https://doi.org/10.1038/npjcompumats.2015.15

  14. Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24:6125–6135. https://doi.org/10.1002/adma.201202919

    Article  CAS  Google Scholar 

  15. Rowe DM, Rosi FD (2006) CRC handbook of thermoelectrics: macro to nano

  16. Wright DA (1958) Thermoelectric properties of bismuth telluride and its alloys. Nature 181:834–834. https://doi.org/10.1038/181834a0

    Article  Google Scholar 

  17. Heremans JP, Thrush CM, Morelli DT (2004) Thermopower enhancement in lead telluride nanostructures. Phys Rev B Condens Matter Mater Phys 70:115334. https://doi.org/10.1103/PhysRevB.70.115334

    Article  CAS  Google Scholar 

  18. Chen ZG, Shi X, Zhao LD, Zou J (2018) High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci 97:283–346. https://doi.org/10.1016/j.pmatsci.2018.04.005

    Article  CAS  Google Scholar 

  19. Poon SJ (2018) Recent advances in thermoelectric performance of half-heusler compounds. Metals (Basel) 8:989. https://doi.org/10.3390/met8120989

    Article  Google Scholar 

  20. Kauzlarich SM, Brown SR, Jeffrey Snyder G (2007) Zintl phases for thermoelectric devices. J Chem Soc Dalt Trans 21:2099–2107. https://doi.org/10.1039/b702266b

    Article  CAS  Google Scholar 

  21. Liu KF, Xia SQ (2019) Recent progresses on thermoelectric Zintl phases: Structures, materials and optimization. J Solid State Chem 270:252–264. https://doi.org/10.1016/j.jssc.2018.11.030

    Article  CAS  Google Scholar 

  22. Gascoin F, Ottensmann S, Stark D, Haile S, Snyder GJ (2005) Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv Funct Mater 15:1860–1864. https://doi.org/10.1002/adfm.200500043

    Article  CAS  Google Scholar 

  23. Chen C, Feng Z, Yao H et al (2021) Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2. Nat Commun 12:1–9. https://doi.org/10.1038/s41467-021-25483-w

    Article  CAS  Google Scholar 

  24. Nesper R (2014) The Zintl-Klemm concept—a historical survey. Zeitschrift fur Anorg und Allg Chemie 640:2639–2648. https://doi.org/10.1002/zaac.201400403

    Article  CAS  Google Scholar 

  25. Zhang J, Song L, Mamakhel A, Jorgensen MRV, Iversen BB (2017) High-performance low-cost n-type se-doped mg3sb2-based zintl compounds for thermoelectric application. Chem Mater 29:5371–5383. https://doi.org/10.1021/acs.chemmater.7b01746

    Article  CAS  Google Scholar 

  26. Yang G, Yang J, Yan Y, Wang Y (2014) The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M = K, Rb). Phys Chem Chem Phys 16:5661–5666. https://doi.org/10.1039/c3cp54545h

    Article  CAS  Google Scholar 

  27. Zevalkink A, Zeier WG, Pomrehn G, Schechtel E, Tremel W, Snyder GJ (2012) Thermoelectric properties of Sr3GaSb3—a chain-forming Zintl compound. Energy Environ Sci 5:9121–9128. https://doi.org/10.1039/c2ee22378c

    Article  CAS  Google Scholar 

  28. Azam S, Khan SA, Goumri-Said S (2015) Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A = K, Rb). Mater Res Bull 70:847–855. https://doi.org/10.1016/j.materresbull.2015.05.044

    Article  CAS  Google Scholar 

  29. Zheng L, Li W, Sun C, Shi X, Zhang X, Pei Y (2020) Ternary thermoelectric AB2C2 Zintls. J Alloys Compd 821:153497. https://doi.org/10.1016/j.jallcom.2019.153497

    Article  CAS  Google Scholar 

  30. Lin Z, Wang G, Le C, Zhao H, Liu n, Hu J, Guo L, Chen X, (2017) Thermal conductivities in NaSnAs, NaSnP, and NaSn2As2: Effect of double lone-pair electrons. Phys Rev B 95:1–7. https://doi.org/10.1103/PhysRevB.95.165201

    Article  Google Scholar 

  31. Guechi N, Bouhemadou A, Medkour Y, Al-Douri Y, Khenata R, Bin-Omran S (2020) Electronic and thermoelectric properties of the layered Zintl phase CaIn2P2: first-principles calculations. Philos Mag 100:3023–3039. https://doi.org/10.1080/14786435.2020.1799101

    Article  CAS  Google Scholar 

  32. Feng Z, Yang J, Wang Y, Yan Y, Yang G, Zhang X (2015) Origin of different thermoelectric properties between Zintl compounds Ba3Al3P5 and Ba3Ga3P5: a first-principles study. J Alloys Compd 636:387–394. https://doi.org/10.1016/j.jallcom.2015.02.133

    Article  CAS  Google Scholar 

  33. He H, Tyson C, Bobev S (2011) Eight-coordinated arsenic in the Zintl phases RbCd4As 3 and RbZn4As3: synthesis and structural characterization. Inorg Chem 50:8375–8383. https://doi.org/10.1021/ic2009418

    Article  CAS  Google Scholar 

  34. Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun 147:71–76. https://doi.org/10.1016/S0010-4655(02)00206-0

    Article  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  36. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:5–8. https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  Google Scholar 

  37. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71. https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  38. Xing G, Sun J, Li Y, Fan X, Zheng W, Singh DJ (2017) Electronic fitness function for screening semiconductors as thermoelectric materials. Phys Rev Mater 1:1–13. https://doi.org/10.1103/PhysRevMaterials.1.065405

    Article  Google Scholar 

  39. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  40. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  CAS  Google Scholar 

  41. Mushtaq M, Sattar MA, Dar SA (2020) Phonon phase stability, structural, mechanical, electronic, and thermoelectric properties of two new semiconducting quaternary Heusler alloys CoCuZrZ (Z = Ge and Sn). Int J Energy Res 44:5936–5946. https://doi.org/10.1002/er.5373

    Article  CAS  Google Scholar 

  42. Lindsay L, Broido DA, Reinecke TL (2013) First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys Rev Lett 111:1–5. https://doi.org/10.1103/PhysRevLett.111.025901

    Article  CAS  Google Scholar 

  43. Born M, Huang K (1956) Dynamical theory of crystal lattices. Acta Cryst 9:837–838. https://doi.org/10.1107/S0365110X56002370

    Article  Google Scholar 

  44. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65:349–354. https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  45. Parvin F, Hossain MA, Ahmed I, Aktr K, Islam AKMA (2021) First-principles calculations to investigate mechanical, optoelectronic and thermoelectric properties of half-Heusler p-type semiconductor BaAgP. Results Phys 23:104068. https://doi.org/10.1016/j.rinp.2021.104068

    Article  Google Scholar 

  46. Anderson OL (1963) A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Solids 24:909–917. https://doi.org/10.1016/0022-3697(63)90067-2

    Article  CAS  Google Scholar 

  47. Chandran AK, Gudelli VK, Sreeparvathy PC, Kanchana V (2016) Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi). J Solid State Chem 243:198–206. https://doi.org/10.1016/j.jssc.2016.08.030

    Article  CAS  Google Scholar 

  48. Snyder GJ, Toberer ES (2010) Complex thermoelectric materials. Mater Sustain Energy A Collect Peer Rev Res Rev Artic from Nat Publ Gr 7:101–110. https://doi.org/10.1142/9789814317665_0016

    Article  Google Scholar 

  49. Dutta M, Ghosh T, Biswas K (2020) Electronic structure modulation strategies in high-performance thermoelectrics. APL Mater 8:040910. https://doi.org/10.1063/5.0002129

    Article  CAS  Google Scholar 

  50. Putatunda A, Xing G, Sun J, Li Y, Singh DJ (2018) Thermoelectric properties of layered NaSbSe 2. J Phys Condens Matter 30:225501. https://doi.org/10.1088/1361-648X/aabf5b

    Article  Google Scholar 

  51. Adebambo PO, Osafile OE, Laoye JA, Idowu MA, Adebayo GA (2021) Electronic fitness function, effective mass and thermoelectric properties of Rh-based (-ScTe; -TiSb; -VSn) alloys for thermoelectric generator applications. Comput Condens Matter 26:e00523. https://doi.org/10.1016/j.cocom.2020.e00523

    Article  Google Scholar 

  52. Slack GA (1979) The Thermal Conductivity of Nonmetallic Crystals. Solid State Phys Adv Res Appl 34:1–71. https://doi.org/10.1016/S0081-1947(08)60359-8

    Article  CAS  Google Scholar 

  53. Gupta Y, Sinha MM, Verma SS (2021) First-principles investigation on the electronic, mechanical and lattice dynamical properties of novel AlNiX (X = As and Sb) half-Heusler alloys. Mater Today Commun 26:101885. https://doi.org/10.1016/j.mtcomm.2020.101885

    Article  CAS  Google Scholar 

  54. Belomestnykh VN, Tesleva EP (2004) Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids. Tech Phys 49:1098–1100. https://doi.org/10.1134/1.1787679

    Article  CAS  Google Scholar 

  55. Bessas D, Sergueev I, Wille HC, Person J, Ebling D, Hermann RP (2012) Lattice dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states. Phys Rev B Condens Matter 86:224301. https://doi.org/10.1103/PhysRevB.86.224301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Sangeeta) wish to acknowledge the financial support provided by Delhi Technological University, Delhi for pursuing Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtiyar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeeta, Kumar, R. & Singh, M. Realizing high thermoelectric performance in p-type RbZn4P3 Zintl compound: a first-principles investigation. J Mater Sci 57, 10691–10701 (2022). https://doi.org/10.1007/s10853-022-06953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06953-y

Navigation