Skip to main content

Advertisement

Log in

Investigation of structure and dynamics of water confined between hybrid layered materials of graphene, boron nitride, and molybdenum disulfide

  • Computational Materials Design
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials like graphene, boron nitride, and molybdenum disulfide are utilized in diverse applications including catalysis, sensing, energy storage, biology, electronics, and so on. However, on a number of occasions, these 2D materials may not satisfy all the desired functions individually due to limitations in their properties. Thus, the urgency to generate new materials by combining and/or functionalizing these pure materials has emerged as a need of the current hour. The hybridization aids in cherishing a blend of new properties by a combination of pure materials. However, the performance of these materials in most of these applications also strongly depends on surrounding environmental factors like temperature, pressure, and especially humidity. Thus, understanding the structure of water near these hybrids and their interfaces is critical to facilitate the design of new devices with enhanced performance. Here, we have computationally designed novel layered hybrid materials of 2D sheets of graphene, boron nitride, and molybdenum disulfide by stacking them one above another. Subsequently, the structure of water in the vicinity of sheets and confined between them was studied using all-atom (AA) molecular dynamics (MD) simulations. In order to understand the dynamics of water, sheets were modeled as flexible or rigid. The structural and dynamical characteristics of hybrids and water confined between these sheets were analyzed by employing radial distribution function (RDF), average atomic-density (z-density) profile of oxygen atoms, orientational tetrahedral order (OTO), asphericity of the Voronoi cell (AVC), O–H bond orientation of water molecules, mean squared displacement (MSD), and residence time probability (Pres(t)). Based on a visual inspection and in-depth analyses on the behavior of sheets when modeled as flexible, all water molecules confined between these sheets were eliminated due to stronger interactions between sheets and their disliking toward the water. Further, in the hybrids with sheets fixed at their crystallographic positions, structural and dynamical properties of water suggest that the hydrophilic interface of BN-MoS2 followed by BN-GR and GR-MoS2 favored the stable and ordered structure of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ashby MF, Bréchet YJM (2003) Designing hybrid materials. Acta Mater 51:5801–5821

    Article  CAS  Google Scholar 

  2. Sanchez C, Shea KJ, Kitagawa S (2011) Recent progress in hybrid materials science. Chem Soc Rev 40:471–472

    Article  CAS  Google Scholar 

  3. Kickelbick G (2014) Hybrid materials—past, present and future. Hybrid Mater 1:39–51

    Google Scholar 

  4. Munch E, Launey ME, Alsem DH et al (2008) Tough, bio-inspired hybrid materials. Science 322:1516–1520

    Article  CAS  Google Scholar 

  5. Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40:907–925

    Article  Google Scholar 

  6. Kim S, Ku SH, Lim SY et al (2011) Graphene-biomineral hybrid materials. Adv Mater 23:2009–2014

    Article  CAS  Google Scholar 

  7. Wang J, Malgras V, Sugahara Y, Yamauchi Y (2021) Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat Commun 12:3563

    Article  CAS  Google Scholar 

  8. Guan G, Han M-Y (2019) Functionalized hybridization of 2D nanomaterials. Adv Sci 6:1901837

    Article  CAS  Google Scholar 

  9. Jo YK, Lee JM, Son S, Hwang S-J (2019) 2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. J Photochem Photobiol C: Photochem Rev 40:150–190

    Article  CAS  Google Scholar 

  10. Sinha S, Kim H, Robertson AW (2021) Preparation and application of 0D–2D nanomaterial hybrid heterostructures for energy applications. Mater Today Adv 12:100169

    Article  CAS  Google Scholar 

  11. Perivoliotis DK, Tagmatarchis N (2017) Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction. Carbon N Y 118:493–510

    Article  CAS  Google Scholar 

  12. Kickelbick G (2007) Hybrid Materials: synthesis, characterization, and applications. Wiley, New York

    Google Scholar 

  13. Lee SW, Cheon SA, Kim MI, Park TJ (2015) Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnology 13:54

    Article  CAS  Google Scholar 

  14. Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host–pathogen interactions. Trends Microbiol 9:397–403

    Article  CAS  Google Scholar 

  15. Guo Y, Zhang Y, Liu H et al (2010) Assembled organic/inorganic p−n junction interface and photovoltaic cell on a single nanowire. J Phys Chem Lett 1:327–330

    Article  CAS  Google Scholar 

  16. Zhang Y, Feng X, Yuan S et al (2016) Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorg Chem Front 3:896–909

    Article  CAS  Google Scholar 

  17. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  18. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. EPL 28:335

    Article  CAS  Google Scholar 

  19. Wang J, Lee CH, Yap YK (2010) Recent advancements in boron nitride nanotubes. Nanoscale 2:2028–2034

    Article  CAS  Google Scholar 

  20. Golberg D, Costa PMFJ, Lourie O et al (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7:2146–2151

    Article  CAS  Google Scholar 

  21. Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C andBxCyNzComposite nanotubes. Phys Rev Lett 80:4502–4505

    Article  Google Scholar 

  22. Suryavanshi AP, Yu M-F, Wen J et al (2004) Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 84:2527–2529

    Article  CAS  Google Scholar 

  23. Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105:297–300

    Article  CAS  Google Scholar 

  24. Chang CW, Han W-Q, Zettl A (2005) Thermal conductivity of B–C–N and BN nanotubes. Appl Phys Lett 86:173102

    Article  CAS  Google Scholar 

  25. Zettl A, Chang CW, Begtrup G (2007) A new look at thermal properties of nanotubes. Physica Status Solidi (b) 24:4181–4183

    Article  CAS  Google Scholar 

  26. Chen Y, Zou J, Campbell SJ, Le Caer G (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432

    Article  CAS  Google Scholar 

  27. Li H, Shi Y, Chiu M-H, Li L-J (2015) Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 18:293–305

    Article  CAS  Google Scholar 

  28. Mattinen M, Leskelä M, Ritala M (2021) Atomic layer deposition of 2d metal dichalcogenides for electronics, catalysis, energy storage, and beyond. Adv Mater Interfaces 8:2001677

    Article  CAS  Google Scholar 

  29. Dou M, Fyta M (2020) Lithium adsorption on 2D transition metal dichalcogenides: towards a descriptor for machine learned materials design. J Mater Chem A 8:23511–23518

    Article  CAS  Google Scholar 

  30. Monga D, Sharma S, Shetti NP et al (2021) Advances in transition metal dichalcogenide-based two-dimensional nanomaterials. Mater Today Chem 19:100399

    Article  CAS  Google Scholar 

  31. Li XL, Li TC, Huang S et al (2020) Controllable synthesis of two-dimensional molybdenum disulfide (MoS) for energy-storage applications. Chemsuschem 13:1379–1391

    Article  CAS  Google Scholar 

  32. Wang H, Zhao Y, Xie Y et al (2017) Recent progress in synthesis of two-dimensional hexagonal boron nitride. J Semicond 38:031003

    Article  CAS  Google Scholar 

  33. Sundararaju U, Mohammad Haniff MAS, Ker PJ, Menon PS (2021) MoS2/h-BN/graphene heterostructure and plasmonic effect for self-powering photodetector: A Review. Materials. https://doi.org/10.3390/ma14071672

    Article  Google Scholar 

  34. Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiomics 1:33–44

    Article  Google Scholar 

  35. Bi H, Yin K, Xie X et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3:2714

    Article  Google Scholar 

  36. Ghosh A, Late DJ, Panchakarla LS et al (2009) NO2and humidity sensing characteristics of few-layer graphenes. J Exp Nanosci 4:313–322

    Article  CAS  Google Scholar 

  37. Han T, Luo Y, Wang C (2014) Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys Appl Phys 47:025303

    Article  CAS  Google Scholar 

  38. Rand MJ, Roberts JF (1968) Preparation and properties of thin film boron nitride. J Electrochem Soc 115:423

    Article  CAS  Google Scholar 

  39. Levita G, Restuccia P, Righi MC (2016) Graphene and MoS2 interacting with water: a comparison by ab initio calculations. Carbon 107:878–884

    Article  CAS  Google Scholar 

  40. Zhao X, Perry SS (2010) The role of water in modifying friction within MoS2 sliding interfaces. ACS Appl Mater Interfaces 2:1444–1448

    Article  CAS  Google Scholar 

  41. Melios C, Centeno A, Zurutuza A et al (2016) Effects of humidity on the electronic properties of graphene prepared by chemical vapour deposition. Carbon N Y 103:273–280

    Article  CAS  Google Scholar 

  42. Soltani A, Thévenin P, Bakhtiar H, Bath A (2005) Humidity effects on the electrical properties of hexagonal boron nitride thin films. Thin Solid Films 471:277–286

    Article  CAS  Google Scholar 

  43. Szmidt J (1992) Electric breakdown phenomena in C-BN layers. Diam Relat Mater 1:681–683

    Article  CAS  Google Scholar 

  44. Brożek T, Szmidt J, Jakubowski A, Olszyna A (1994) Electrical behaviour and breakdown in plasma deposited cubic BN layers. Diam Relat Mater 3:720–724

    Article  Google Scholar 

  45. Ronning C, Dreher E, Feldermann H et al (1997) Electrical properties and thermal stability of ion beam deposited BN thin films. Diam Relat Mater 6:1129–1134

    Article  CAS  Google Scholar 

  46. Pritchard C, Midgley JW (1969) The effect of humidity on the friction and life of unbonded molybdenum disulphide films. Wear 13:39–50

    Article  CAS  Google Scholar 

  47. Kwac K, Kim I, Pascal TA et al (2017) Multilayer two-dimensional water structure confined in MoS2. J Phys Chem C 121:16021–16028

    Article  CAS  Google Scholar 

  48. Fang C, Wu X, Yang F, Qiao R (2018) Flow of quasi-two dimensional water in graphene channels. J Chem Phys 148:064702

    Article  CAS  Google Scholar 

  49. Deshmukh SA, Kamath G, Baker GA et al (2013) The interfacial dynamics of water sandwiched between graphene sheets are governed by the slit width. Surf Sci 609:129–139

    Article  CAS  Google Scholar 

  50. Jiao S, Duan C, Xu Z (2017) Structures and thermodynamics of water encapsulated by graphene. Sci Rep 7:2646

    Article  CAS  Google Scholar 

  51. Lee MJ, Choi JS, Kim J-S et al (2012) Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Res 5:710–717

    Article  CAS  Google Scholar 

  52. Maekawa Y, Sasaoka K, Yamamoto T (2019) Comparison between microscopic structures of surficial water on hexagonal boron nitride and graphene. Appl Phys Express 12:115001

    Article  CAS  Google Scholar 

  53. Jiang J-W, Park HS, Rabczuk T (2013) Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J Appl Phys 114:064307

    Article  CAS  Google Scholar 

  54. Xiong S, Cao G (2015) Molecular dynamics simulations of mechanical properties of monolayer MoS2. Nanotechnology 26:185705

    Article  CAS  Google Scholar 

  55. Wagemann E, Wang Y, Das S, Mitra SK (2020) Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy. Phys Chem Chem Phys 22:2488–2497

    Article  CAS  Google Scholar 

  56. Dutta RC, Khan S, Singh JK (2011) Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study. Fluid Phase Equilib 302:310–315

    Article  CAS  Google Scholar 

  57. Raj R, Maroo SC, Wang EN (2013) Wettability of graphene. Nano Lett 13:1509–1515

    Article  CAS  Google Scholar 

  58. Bejagam KK, Singh S, Deshmukh SA (2018) Development of non-bonded interaction parameters between graphene and water using particle swarm optimization. J Comput Chem 39:721–734

    Article  CAS  Google Scholar 

  59. Achari PF, Bejagam KK, Singh S, Deshmukh SA (2019) Development of non-bonded interaction parameters between hexagonal boron-nitride and water. Comput Mater Sci 161:339–345

    Article  CAS  Google Scholar 

  60. Rana MK, Chandra A (2013) Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet. J Chem Phys 138:204702

    Article  CAS  Google Scholar 

  61. Gordillo MC, Martí J (2008) Structure of water adsorbed on a single graphene sheet. Phys Rev B 78:075432

    Article  CAS  Google Scholar 

  62. Brenner DW, Shenderova OA, Harrison JA et al (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783

    Article  CAS  Google Scholar 

  63. Kınacı A, Haskins JB, Sevik C, Çağın T (2012) Thermal conductivity of BN-C nanostructures. Phys Rev B Condens Matter 86:115410

    Article  CAS  Google Scholar 

  64. Jiang J-W (2015) Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology 26:315706

    Article  CAS  Google Scholar 

  65. Wen M, Shirodkar SN, Plecháč P et al (2017) A force-matching stillinger-weber potential for MoS2: parameterization and fisher information theory based sensitivity analysis. J Appl Phys 122:244301

    Article  CAS  Google Scholar 

  66. Rappe AK, Casewit CJ, Colwell KS et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  67. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  CAS  Google Scholar 

  68. Paesani F, Zhang W, Case DA et al (2006) An accurate and simple quantum model for liquid water. J Chem Phys 125:184507

    Article  CAS  Google Scholar 

  69. Wu Y, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124:024503

    Article  CAS  Google Scholar 

  70. Sose AT, Mohammadi E, Achari PF, Deshmukh SA (2022) Determination of accurate interaction parameters between the molybdenum disulfide and water to investigate their Interfacial properties. J Phys Chem C 126:2013–2022

    Article  CAS  Google Scholar 

  71. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J comput phys 117(1):1–19

    Article  CAS  Google Scholar 

  72. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  73. Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys 31:1695–1697

    Article  CAS  Google Scholar 

  74. Hockney RW, Eastwood JW (2021) Computer simulation using particles. CRC Press, USA

    Book  Google Scholar 

  75. Altabet YE, Haji-Akbari A, Debenedetti PG (2017) Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water. Proc Natl Acad Sci 114:E2548–E2555

    Article  CAS  Google Scholar 

  76. Sharma S, Debenedetti PG (2012) Evaporation rate of water in hydrophobic confinement. Proc Natl Acad Sci U S A 109:4365–4370

    Article  CAS  Google Scholar 

  77. Chow PK, Singh E, Viana BC et al (2015) Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9:3023–3031

    Article  CAS  Google Scholar 

  78. Kozbial A, Gong X, Liu H, Li L (2015) Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 31:8429–8435

    Article  CAS  Google Scholar 

  79. Sose AT, Cornell HD, Gibbons BJ et al (2021) Modelling drug adsorption in metal–organic frameworks: the role of solvent. RSC Adv 11:17064–17071

    Article  CAS  Google Scholar 

  80. Narwani T, Etchebest C, Craveur P, et al (2019) In silico prediction of protein flexibility with local structure approach. arXiv [q-bio.QM]

  81. Sun W, Du J (2019) Local ordering and interfacial structure between spinel crystal and aluminosilicate glasses from molecular dynamics simulations. Int J Appl Glass Sci 10:41–56

    Article  CAS  Google Scholar 

  82. Wadhwa R, Yadav NS, Katiyar SP et al (2021) Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Sci Rep 11:2352

    Article  CAS  Google Scholar 

  83. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Cambridge

    Book  Google Scholar 

  84. Frenkel D, Smit B (2001) Understanding Molecular simulation: from algorithms to applications. Elsevier, Amsterdam

    Google Scholar 

  85. Haile JM (1997) Molecular dynamics simulation: elementary methods. Wiley, New York

    Google Scholar 

  86. Giorgino T (2014) Computing 1-D atomic densities in macromolecular simulations: The density profile tool for VMD. Comput Phys Commun 185:317–322

    Article  CAS  Google Scholar 

  87. Cicero G, Grossman JC, Schwegler E et al (2008) Water confined in nanotubes and between graphene sheets: a first principle study. J Am Chem Soc 130:1871–1878

    Article  CAS  Google Scholar 

  88. Mosaddeghi H, Alavi S, Kowsari MH, Najafi B (2012) Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates. J Chem Phys 137:184703

    Article  CAS  Google Scholar 

  89. Chau P-L, Hardwick AJ (1998) A new order parameter for tetrahedral configurations. Mol Phys 93:511–518

    Article  CAS  Google Scholar 

  90. Galamba N (2013) Water’s structure around hydrophobic solutes and the iceberg model. J Phys Chem B 117:2153–2159

    Article  CAS  Google Scholar 

  91. Nutt DR, Smith JC (2008) Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J Am Chem Soc 130:13066–13073

    Article  CAS  Google Scholar 

  92. Midya US, Bandyopadhyay S (2014) Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. J Phys Chem B 118:4743–4752

    Article  CAS  Google Scholar 

  93. Lee SL, Debenedetti PG, Errington JR (2005) A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. J Chem Phys 122:204511

    Article  CAS  Google Scholar 

  94. Giovambattista N, Rossky PJ, Debenedetti PG (2009) Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces. J Phys Chem B 113:13723–13734

    Article  CAS  Google Scholar 

  95. Agarwal M, Kushwaha HR, Chakravarty C (2010) Local order, energy, and mobility of water molecules in the hydration shell of small peptides. J Phys Chem B 114:651–659

    Article  CAS  Google Scholar 

  96. Malaspina DC, Schulz EP, Alarcón LM et al (2010) Structural and dynamical aspects of water in contact with a hydrophobic surface. Eur Phys J E Soft Matter 32:35–42

    Article  CAS  Google Scholar 

  97. Elola MD, Ladanyi BM (2006) Computational study of structural and dynamical properties of formamide-water mixtures. J Chem Phys 125:184506

    Article  CAS  Google Scholar 

  98. Bandyopadhyay D, Mohan S, Ghosh SK, Choudhury N (2014) Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J Phys Chem B 118:11757–11768

    Article  CAS  Google Scholar 

  99. Duboué-Dijon E, Laage D (2015) Characterization of the Local structure in liquid water by various order parameters. J Phys Chem B 119:8406–8418

    Article  CAS  Google Scholar 

  100. Kong Z, Zhang P, Ma X et al (2020) Characterization of water structure in carbon nanotubes by various order parameters. Chem Phys 538:110887

    Article  CAS  Google Scholar 

  101. Ruocco G, Sampoli M, Vallauri R (1992) Analysis of the network topology in liquid water and hydrogen sulphide by computer simulation. J Chem Phys 96:6167–6176

    Article  CAS  Google Scholar 

  102. Duboué-Dijon E, Fogarty AC, Laage D (2014) Temperature dependence of hydrophobic hydration dynamics: from retardation to acceleration. J Phys Chem B 118:1574–1583

    Article  CAS  Google Scholar 

  103. Chakraborty SN, Grzelak EM, Barnes BC et al (2012) Voronoi tessellation analysis of clathrate hydrates. J Phys Chem C 116:20040–20046

    Article  CAS  Google Scholar 

  104. Stirnemann G, Laage D (2012) Communication: on the origin of the non-Arrhenius behavior in water reorientation dynamics. J Chem Phys 137:031101

    Article  CAS  Google Scholar 

  105. Jedlovszky P, Pártay LB, Bartók AP et al (2008) Structural and thermodynamic properties of different phases of supercooled liquid water. J Chem Phys 128:244503

    Article  CAS  Google Scholar 

  106. Yeh Y-L, Mou C-Y (1999) Orientational relaxation dynamics of liquid water studied by molecular dynamics simulation. J Phys Chem B 103:3699–3705

    Article  CAS  Google Scholar 

  107. Jedlovszky P (1999) Voronoi polyhedra analysis of the local structure of water from ambient to supercritical conditions. J Chem Phys 111:5975–5985

    Article  CAS  Google Scholar 

  108. Yan Z, Buldyrev SV, Kumar P et al (2007) Structure of the first- and second-neighbor shells of simulated water: quantitative relation to translational and orientational order. Phys Rev E 76:051201

    Article  CAS  Google Scholar 

  109. Sciortino F, Geiger A, Stanley HE (1992) Network defects and molecular mobility in liquid water. J Chem Phys 96:3857–3865

    Article  CAS  Google Scholar 

  110. Wikfeldt KT (2011) Structure, dynamics and thermodynamics of liquid water: insights from molecular simulations. Stockholm University, Stockholm

    Google Scholar 

  111. Maurya M, Metya AK, Singh JK, Saito S (2021) Effects of interfaces on structure and dynamics of water droplets on a graphene surface: a molecular dynamics study. J Chem Phys 154:164704

    Article  CAS  Google Scholar 

  112. Wu M, Wei W, Liu X et al (2019) Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys Chem Chem Phys 21:19163–19171

    Article  CAS  Google Scholar 

  113. M R, Ayappa KG, (2019) Enhancing the dynamics of water confined between graphene oxide surfaces with janus interfaces: a molecular dynamics study. J Phys Chem B 123:2978–2993

    Article  CAS  Google Scholar 

  114. Hamid I, Jalali H, Peeters FM, Neek-Amal M (2021) Abnormal in-plane permittivity and ferroelectricity of confined water: From sub-nanometer channels to bulk. J Chem Phys 154:114503

    Article  CAS  Google Scholar 

  115. Smirnov KS (2017) A molecular dynamics study of the interaction of water with the external surface of silicalite-1. Phys Chem Chem Phys 19:2950–2960

    Article  CAS  Google Scholar 

  116. Ghasemi M, Ramsheh SM, Sharma S (2018) Quantitative assessment of thermodynamic theory in elucidating the behavior of water under hydrophobic confinement. J Phys Chem B 122:12087–12096

    Article  CAS  Google Scholar 

  117. Sharma S, Debenedetti PG (2012) Free energy barriers to evaporation of water in hydrophobic confinement. J Phys Chem B 116:13282–13289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Advanced Research Computing (ARC), Virginia Tech for providing computational resources. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket A. Deshmukh.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Handling Editor: N. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sose, A.T., Mohammadi, E., Wang, F. et al. Investigation of structure and dynamics of water confined between hybrid layered materials of graphene, boron nitride, and molybdenum disulfide. J Mater Sci 57, 10517–10534 (2022). https://doi.org/10.1007/s10853-022-07073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07073-3

Navigation