Skip to main content
Log in

Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ti6Al4V-equine bone (EB) nanocomposites fabricated by powder metallurgy and heat treatment are considered attractive biomaterials owing to the combined properties of Ti6Al4V and EB, which contains natural hydroxyapatite (HAp). In this study, the biocompatibility and corrosion resistance of Ti6Al4V-EB composites were assessed by culture with MC3T3-E1 cells and corrosion tests in 0.9% NaCl solution at the normal body temperature. Biocompatibility test showed that enhanced MC3T3-E1 cell adhesion, spreading, and proliferation on the EB embed Ti6Al4V composites compared to those grown on pure Ti6Al4V. This finding is attributed to the rich HAp content of EB, which exerts a positive effect on MC3T3-E1 cell attachment to the Ti6Al4V-EB composite surface. Electrochemical analysis revealed that corrosion rate of composites containing 0.05 and 0.5 wt% EB is 0.00247–0.01132 mpy which is lower than that of pure Ti6Al4V which is 0.0358 mpy. This result indicated that the EB particles dispersed in the composite matrix interfere with the transfer of metal ions and could improve corrosion resistance. Given the excellent corrosion resistance and bioactivity of the Ti6Al4V-EB composites, these materials may have potential applications as biomaterials for implants featuring reduced healing periods without metal ion elution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bandyopadhyay A, Dittrick S, Gualtieri T, Wu J, Bose S (2016) Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants. J Mech Behav Biomed Mater 57:280–288

    Article  CAS  Google Scholar 

  2. Fousová M, Vojtěch D, Kubásek J, Jablonská E, Fojt J (2017) Promising characteristics of gradient porosity Ti- 6Al-4V alloy prepared by SLM process. J Mech Behav Biomed Mater 69:368–376

    Article  Google Scholar 

  3. M. Niinomi, Metals for biomedical devices, Woodhead publishing2019.

  4. Ścibior A, Wnuk E, Gołębiowska D (2021) Wild animals in studies on vanadium bioaccumulation-potential animal models of environmental vanadium contamination: a comprehensive overview with a polish accent. Sci Total Environ 785:147205

    Article  Google Scholar 

  5. Mirza A, King A, Troakes C, Exley C (2017) Aluminium in brain tissue in familial Alzheimer’s disease. J Trace Elem Med Biol 40:30–36

    Article  CAS  Google Scholar 

  6. Jiraborvornpongsa N, Isobe T, Matsushita S, Yamaguchi A, Miyauchi M, Wakamura M, Nakajima A (2019) Effects of MoOx modification on photocatalytic activity of hydroxyapatite and Ti-doped hydroxyapatite. Adv Powder Technol 30(8):1617–1624

    Article  CAS  Google Scholar 

  7. Priyadarshini B, Ramya S, Shinyjoy E, Kavitha L, Gopi D, Vijayalakshmi U (2021) Structural, morphological and biological evaluations of cerium incorporated hydroxyapatite sol–gel coatings on Ti–6Al–4V for orthopaedic applications. J Market Res 12:1319–1338

    CAS  Google Scholar 

  8. Han C, Wang Q, Song B, Li W, Wei Q, Wen S, Liu J, Shi Y (2017) Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting. J Mech Behav Biomed Mater 71:85–94

    Article  CAS  Google Scholar 

  9. Han C, Li Y, Wang Q, Cai D, Wei Q, Yang L, Wen S, Liu J, Shi Y (2018) Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM: material interface and fracture toughness. Mater Design 141:256–266

    Article  CAS  Google Scholar 

  10. Jang K-J, Cho WJ, Seonwoo H, Kim J, Lim KT, Chung P-H, Chung JH (2014) Development and characterization of horse bone-derived natural calcium phosphate powders. J Biosyst Eng 39(2):122–133

    Article  Google Scholar 

  11. Lim JW, Jang K-J, Son H, Park S, Kim JE, Kim HB, Seonwoo H, Choung Y-H, Lee MC, Chung JH (2021) Aligned nanofiber-guided bone regeneration barrier incorporated with equine bone-derived hydroxyapatite for alveolar bone regeneration. Polymers 13(1):60

    Article  CAS  Google Scholar 

  12. Jeong W, Shin S-E, Son H, Choi H (2021) Effect of heat treatment on the microstructural and mechanical properties of Ti6Al4V-equine bone nanocomposites. Mater Charact 179:111361

    Article  CAS  Google Scholar 

  13. ur Rahman Z, Shabib I, Haider W (2016) Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys. Mater Sci Eng C 67:675–683

  14. Rahimi E, Offoiach R, Baert K, Terryn H, Lekka M, Fedrizzi L (2021) Role of phosphate, calcium species and hydrogen peroxide on albumin protein adsorption on surface oxide of Ti6Al4V alloy. Materialia 15:100988

    Article  CAS  Google Scholar 

  15. Hiromoto S (2010) Corrosion of metallic biomaterials. Elsevier, Metals for biomedical devices, pp 99–121

    Google Scholar 

  16. Mareci D, Sutiman D, Chelariu R, Leon F, Curteanu S (2013) Evaluation of the corrosion resistance of new ZrTi alloys by experiment and simulation with an adaptive instance-based regression model. Corros Sci 73:106–122

    Article  CAS  Google Scholar 

  17. Rogina A, Košić I, Antunović M, Ivanković M, Ivanković H (2020) The bioactivity of titanium-cuttlefish bone-derived hydroxyapatite composites sintered at low temperature. Powder Metall 63(4):300–310

    Article  CAS  Google Scholar 

  18. Toptan F, Alves AC, Ferreira MA, da Silva Oliveira CI, Pinto AM (2018) Effect of HAP decomposition on the corrosion behavior of Ti–HAP biocomposites. Mater Corr 69(9):1292–1299

  19. Jeong W, Shin S-E, Choi H (2020) Microstructure and mechanical properties of titanium-equine bone biocomposites. Metals 10(5):581

    Article  CAS  Google Scholar 

  20. Bueno-Vera J, Torres-Zapata I, Sundaram P, Diffoot-Carlo N, Vega-Olivencia C (2015) Electrochemical characterization of MC3T3-E1 cells cultured on γTiAl and Ti–6Al–4V alloys. Bioelectrochemistry 106:316–327

    Article  CAS  Google Scholar 

  21. Linez-Bataillon P, Monchau F, Bigerelle M, Hildebrand HF (2002) In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates. Biomol Eng 19(2):133–141

    Article  CAS  Google Scholar 

  22. Pang S, He Y, He P, Luo X, Guo Z, Li H (2018) Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior. Colloid Surf B 171:40–48

    Article  CAS  Google Scholar 

  23. Myung SW, Ko YM, Kim BH (2013) Effect of plasma surface functionalization on preosteoblast cells spreading and adhesion on a biomimetic hydroxyapatite layer formed on a titanium surface. Appl Surf Sci 287:62–68

    Article  CAS  Google Scholar 

  24. Izquierdo-Barba I, Santos-Ruiz L, Becerra J, Feito M, Fernández-Villa D, Serrano M, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo F (2019) Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment. Acta Biomater 83:456–466

    Article  CAS  Google Scholar 

  25. Wagner C, Traud W (1938) Additive hypothesis for oxidation-reduction reactions. Z Electrochem 44:391

    CAS  Google Scholar 

  26. Stern M, Geary AL (1957) Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104(1):56

  27. Mehta Y, Trivedi S, Chandra K, Mishra P (2010) Effect of silicon on the corrosion behavior of powder-processed phosphoric irons. J Min Mater Character Eng 9(10):855–865

    Google Scholar 

  28. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V (2011) Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29(6):739–767

    Article  CAS  Google Scholar 

  29. Jang K-J, Seonwoo H, Yang M, Park S, Lim KT, Kim J, Choung P-H, Chung JH (2021) Development and characterization of waste equine bone-derived calcium phosphate cements with human alveolar bone-derived mesenchymal stem cells. Connect Tissue Res 62(2):164–175

    Article  CAS  Google Scholar 

  30. Montiel-Flores E, Mejía-García OA, Ordoñez-Librado JL, Gutierrez-Valdez AL, Espinosa-Villanueva J, Dorado-Martínez C, Reynoso-Erazo L, Tron-Alvarez R, Rodríguez-Lara V, Avila-Costa MR (2021) Alzheimer-like cell death after vanadium pentoxide inhalation. Heliyon 7:e07856

    Article  CAS  Google Scholar 

  31. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T (2001) Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22(11):1253–1262

    Article  CAS  Google Scholar 

  32. Huang Y, Ding Q, Pang X, Han S, Yan Y (2013) Corrosion behavior and biocompatibility of strontium and fluorine co-doped electrodeposited hydroxyapatite coatings. Appl Surf Sci 282:456–462

    Article  CAS  Google Scholar 

  33. Park S-Y, Choe H-C (2018) Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Appl Surf Sci 432:278–284

    Article  CAS  Google Scholar 

  34. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41(17):3130–3146

    Article  CAS  Google Scholar 

  35. Chalisgaonkar V, Das M, Balla VK (2018) Laser processing of Ti composite coatings reinforced with hydroxyapatite and bioglass. Addit Manuf 20:134–143

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1I1A3050323) and the “Competency Development Program for Industry Specialists” of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement of Technology (KIAT) (No. P0002019, HRD Program for High Value-Added Metallic Material Expert).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Eun Shin.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, W., Shin, SE. Biocompatibility and corrosion behavior of heat-treated Ti6Al4V-equine bone nanocomposites. J Mater Sci 57, 18051–18061 (2022). https://doi.org/10.1007/s10853-022-07370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07370-x

Navigation