Skip to main content

Advertisement

Log in

Excellent combination of cryogenic strength and ductility of a metastable Fe65Ni15Co8Mn8Ti3Si medium entropy alloy through the exceptional deformation-induced martensitic transformation

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, the cryogenic tensile properties of a metastable Fe65Ni15Co8Mn8Ti3Si (at%) medium entropy alloy (MEA) and the impact of the transformation-induced plasticity on the strength-ductility synergy of the corresponding MEA were investigated. Toward this end, the as-annealed specimen with fully face-centered-cubic (FCC) microstructure and the average grain size of 13 μm has been used. The deformation-induced martensitic transformation (DIMT) from the initial FCC phase to the body-centered cubic (bcc) one resulted in an ultra-strength of 1.8 GPa and excellent ductility of 62% through the high strain-hardening rate of ~ 6 GPa which has an excellent combination of mechanical strength and ductility compared to the present literature on HEAs/MEAs. The improved cryogenic tensile properties of the corresponding MEA, in comparison with the present literature, are due to the co-activation of solid solution strengthening, dislocation-mediated plasticity, and the DIMT. Numerical analysis was performed to figure out the strain distribution along the deformed specimen and to correlate it with the martensitic fraction. The present results can expand the possibilities for developing ferrous MEAs/HEAs to overcome the strength and toughness trade-off at cryogenic temperatures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Martin AC, Oliveira JP, Fink C (2020) Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi High-entropy alloy. Metall Mater Trans A 51:778–787. https://doi.org/10.1007/s11661-019-05564-8

    Article  CAS  Google Scholar 

  2. Haftlang F, Kim HS (2021) A perspective on precipitation-hardened high-entropy alloys fabricated by additive manufacturing. Mater Des 211:110161. https://doi.org/10.1016/j.matdes.2021.110161

    Article  CAS  Google Scholar 

  3. Oliveira JP, Shen J, Zeng Z, Park JM, Choi YT, Schell N, Maawad E, Zhou N, Kim HS (2022) Dissimilar laser welding of a CoCrFeMnNi high entropy alloy to 316 stainless steel. Scr Mater 206:114219. https://doi.org/10.1016/j.scriptamat.2021.114219

    Article  CAS  Google Scholar 

  4. Castro D, Jaeger P, Baptista AC, Oliveira JP (2021) An overview of high-entropy alloys as biomaterials. Metals 11(4):648. https://doi.org/10.3390/met11040648

    Article  CAS  Google Scholar 

  5. Salishchev GA, Tikhonovsky MA, Shaysultanov DG, Stepanov ND, Kuznetsov AV, Kolodiy IV, Tortika AS, Senkov ON (2014) Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd 591:11–21. https://doi.org/10.1016/j.jallcom.2013.12.210

    Article  CAS  Google Scholar 

  6. Kim Y, Park HK, Asghari-Rad P, Jung J, Moon J, Kim HS (2021) Constitutive modeling with critical twinning stress in CoCrFeMnNi high entropy alloy at cryogenic temperature and room Temperature. Met Mater Int 27:2300–2309. https://doi.org/10.1007/s12540-020-00818-2

    Article  CAS  Google Scholar 

  7. Liang HL, Tsai CW, Guo S (2021) Design of corrosion-resistant high-entropy alloys through valence electron concentration and new PHACOMP. J Alloys Compd 883:160787. https://doi.org/10.1016/j.jallcom.2021.160787

    Article  CAS  Google Scholar 

  8. Kalali DG, Antharam S, Hasan M, Karthik PS, Phani PS, Rao KBS, Rajulapati KV (2021) On the origins of ultra-high hardness and strain gradient plasticity in multi-phase nanocrystalline MoNbTaTiW based refractory high-entropy alloy. Mater Sci Eng A 812:141098. https://doi.org/10.1016/j.msea.2021.141098

    Article  CAS  Google Scholar 

  9. Lee GT, Won JW, Lim KR, Kang M, Kwon HJ, Na YS, Choi YS (2021) Effect of microstructural features on the high-cycle fatigue behavior of CoCrFeMnNi high-entropy alloys deformed at room and cryogenic temperatures. Met Mater Int 27:593–602. https://doi.org/10.1007/s12540-020-00786-7

    Article  CAS  Google Scholar 

  10. Haftlang F, Zargaran A, Sung S, Lee S, Hong SJ, Kim HS (2022) Correlation between the subsurface deformed region and the superficial protective tribo-oxide layer surface in a non-equiatomic CoCrFeNiV high entropy alloy. Mater Des 218:110685. https://doi.org/10.1016/j.matdes.2022.110685

    Article  CAS  Google Scholar 

  11. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture–resistant high–entropy alloy for cryogenic applications. Science 345:1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  12. Jo YH, Choi WM, Kim DG, Zargaran A, Sohn SS, Kim HS, Lee BJ, Lee S (2019) Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Mater Sci Eng A 743:665–674. https://doi.org/10.1016/j.msea.2018.11.136

    Article  CAS  Google Scholar 

  13. Choi WM, Jo YH, Kim DG, Sohn SS, Lee S, Lee BJ (2019) A thermodynamic description of the Co-Cr-Fe-Ni-V system for high-entropy alloy design. Calphad 66:101624. https://doi.org/10.1016/j.calphad.2019.05.001

    Article  CAS  Google Scholar 

  14. Jo YH, Jung S, Choi WM, Sohn SS, Kim HS, Lee BJ, Kim NJ, Lee S (2017) Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun 8:15719. https://doi.org/10.1038/ncomms15719

    Article  CAS  Google Scholar 

  15. Jo YH, Choi WM, Kim DG, Zargaran A, Sohn SS, Kim HS, Lee BJ, Kim NJ, Lee S (2019) FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35-x medium-entropy alloys. Sci Rep 9:2948. https://doi.org/10.1038/s41598-019-39570-y

    Article  CAS  Google Scholar 

  16. Li J, Yamanaka K, Chiba A (2022) Significant lattice-distortion effect on compressive deformation in Mo-added CoCrFeNi-based high-entropy alloys. Mater Sci Eng A 830:142295. https://doi.org/10.1016/j.msea.2021.142295

    Article  CAS  Google Scholar 

  17. Shahmir H, Nili-Ahmadabadi M, Shafiee A, Andrzejczuk M, Lewandowska M, Langdon TG (2018) Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Mater Sci Eng A 725:196–206. https://doi.org/10.1016/j.msea.2018.04.014

    Article  CAS  Google Scholar 

  18. Thorhallsson AI, Csáki I, Geambazu LE, Magnus F, Karlsdottir SN (2021) Effect of alloying ratios and Cu-addition on corrosion behaviour of CoCrFeNiMo high-entropy alloys in superheated steam containing CO2, H2S and HCl. Cor Sci 178:109083. https://doi.org/10.1016/j.corsci.2020.109083

    Article  CAS  Google Scholar 

  19. Wang WR, Wang WL, Yeh JW (2014) Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd 589:143–152. https://doi.org/10.1016/j.jallcom.2013.11.084

    Article  CAS  Google Scholar 

  20. Xin B, Zhang A, Han J, Meng J (2021) Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si. J Alloys Compd 869:159122. https://doi.org/10.1016/j.jallcom.2021.159122

    Article  CAS  Google Scholar 

  21. Haftlang F, Zarei-Hanzaki A, Abedi HR (2020) The effect of nano-size second precipitates on the structure, apatite-inducing ability and in-vitro biocompatibility of TNTZ alloy. Mater Sci Eng C 109:110561. https://doi.org/10.1016/j.msec.2019.110561

    Article  CAS  Google Scholar 

  22. Zhang K, Zhang X, Zhang E, Wei R, Wang L, Chen J, Yuan S, Han Z, Chen C, Li F (2021) Strengthening of ferrous medium entropy alloys by promoting phase transformation. Intermetallics 136:107265. https://doi.org/10.1016/j.intermet.2021.107265

    Article  CAS  Google Scholar 

  23. Chung DH, Kim WC, Baek SY, Kim MH, Na YS (2022) Thermodynamics-based design strategy for optimizing strength and ductility of Cr-Ni-Mn-Fe medium-entropy alloys. J Alloys Compd 899:163331. https://doi.org/10.1016/j.jallcom.2021.163331

    Article  CAS  Google Scholar 

  24. Haftlang F, Asghari-Rad P, Moon J, Zargaran A, Lee KA, Hong SJ, Kim HS (2021) Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures. Scr Mater 202:114013. https://doi.org/10.1016/j.matlet.2020.128626

    Article  CAS  Google Scholar 

  25. Haftlang F, Asghari-Rad P, Moon J, Lee S, Kato H, Kim HS (2021) Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure. Mater Let 302:130391. https://doi.org/10.1016/j.matlet.2020.128626

    Article  CAS  Google Scholar 

  26. Kamali MR, Mashreghi AR, Karjalainen LP, Hasani S, Javaheri V, Kömi J (2020) Influence of microstructure and texture evolution on magnetic properties attained by annealing of a cold-rolled Fe-Co-10V semi-hard magnetic alloy. Mater Charact 169:110591. https://doi.org/10.1016/j.matchar.2020.110591

    Article  CAS  Google Scholar 

  27. Haftlang F, Zarei-Hanzaki A, Abedi HR (2019) The wear induced crystallographic texture transition and its effect on the tribological performance of Ti-29Nb-14Ta-4.5Zr. Appl Surf Sci 491:360–373. https://doi.org/10.1016/j.apsusc.2019.06.087

    Article  CAS  Google Scholar 

  28. Povolyaeva E, Mironov S, Shaysultanov D, Stepanov N, Zherebtsov S (2022) Outstanding cryogenic strength-ductility properties of a cold-rolled medium-entropy TRIP Fe65(CoNi)25Cr9·5C0.5 alloy. Mater Sci Eng A 836:142720. https://doi.org/10.1016/j.msea.2022.142720

    Article  CAS  Google Scholar 

  29. Dong Y, Duan S, Huang X, Li C, Zhang Z (2021) Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures. Mater Let 294:129778. https://doi.org/10.1016/j.matlet.2021.129778

    Article  CAS  Google Scholar 

  30. Haftlang F, Zarei-Hanzaki A, Abedi HR, Kalaei MA, Nemecek J (2020) The role of nano-second phases in the room temperature deformation of the metastable β-Ti-29Nb-14Ta-4.5Zr alloy. Mater Sci Eng A 771:138583. https://doi.org/10.1016/j.msea.2019.138583

    Article  CAS  Google Scholar 

  31. Park JM, Moon J, Bae JW, Kim DH, Jo YH, Lee S, Kim HS (2019) Role of BCC phase on tensile behavior of dual-phase Al0.5CoCrFeMnNi high-entropy alloy at cryogenic temperature. Mater Sci Eng A 746:443–447. https://doi.org/10.1016/j.msea.2019.01.041

    Article  CAS  Google Scholar 

  32. Yang J, Jo YH, An W, Kim HS, Lee BJ, Lee S, Sung H, Sohn SS (2022) Effects of deformation-induced martensitic transformation on cryogenic fracture toughness for metastable Si8V2Fe45Cr10Mn5Co30 high-entropy alloy. Acta Mater 225:117568. https://doi.org/10.1016/j.actamat.2021.117568

    Article  CAS  Google Scholar 

  33. Jo YH, Doh KY, Kim DG, Lee K, Kim DW, Sung H, Sohn SS, Lee D, Kim HS, Lee BJ, Lee S (2019) Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy. J Alloys Compd 809:151864. https://doi.org/10.1016/j.jallcom.2019.151864

    Article  CAS  Google Scholar 

  34. Wang S, Wu M, Shu D, Zhu G, Wang D, Sun B (2020) Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater 201:517–527. https://doi.org/10.1016/j.actamat.2020.10.044

    Article  CAS  Google Scholar 

  35. Kwon H, Sathiyamoorthi P, Karthik GM, Asghari-Rad P, Zargaran A, Do HS, Lee BJ, Kato H, Kim HS (2021) 2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy. Scr Mater 204:114157. https://doi.org/10.1016/j.scriptamat.2021.114157

    Article  CAS  Google Scholar 

  36. Jo YH, Yang J, Doh KY, An W, Kim DW, Sung H, Lee D, Kim HS, Sohn SS, Lee S (2020) Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures. J Alloys Compd 844:156090. https://doi.org/10.1016/j.jallcom.2020.156090

    Article  CAS  Google Scholar 

  37. Wei C, Lu Y, Du X, Li T, Wang T, Liaw PK (2021) Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures. Mater Sci Eng A 818:141446. https://doi.org/10.1016/j.msea.2021.141446

    Article  CAS  Google Scholar 

  38. Dong Y, Duan S, Huang X, Li C, Zhang Z (2021) Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures. Mater Lett 294:129778. https://doi.org/10.1016/j.matlet.2021.129778

    Article  CAS  Google Scholar 

  39. Kwon J, Lee J, Kim HS (2022) Constitutive modeling and finite element analysis of metastable medium entropy alloy. Mater Sci Eng A 840:142915. https://doi.org/10.1016/j.msea.2022.142915

    Article  CAS  Google Scholar 

  40. Shim SH, Moon J, Pouraliakbar H, Lee BJ, Hong SI, Kim HS (2022) Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures. J Alloys Compd 897:163217. https://doi.org/10.1016/j.jallcom.2021.163217

    Article  CAS  Google Scholar 

  41. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  42. Gludovatz B, Hohenwarter A, Thurston K, Bei H, Wu Z, George EP, Ritchie RO (2016) Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 7:10602. https://doi.org/10.1038/ncomms10602

    Article  CAS  Google Scholar 

  43. Kim DG, Jo YH, Yang J, Choi WM, Kim HS, Lee BJ, Sohn SS, Lee S (2019) Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation. Scr Mater 171:67–72. https://doi.org/10.1016/j.scriptamat.2019.06.026

    Article  CAS  Google Scholar 

  44. Sun SJ, Tian YZ, An XH, Lin HR, Wang JW, Zhang ZF (2018) Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure. Mater Today Nano 4:46–53. https://doi.org/10.1016/j.mtnano.2018.12.002

    Article  Google Scholar 

  45. Yang DC, Jo YH, Ikeda Y, Körmann F, Sohn SS (2021) Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy. J Mater Sci Technol 90:159–167. https://doi.org/10.1016/j.jmst.2021.02.034

    Article  CAS  Google Scholar 

  46. Tang L, Yan K, Cai B, Wang Y, Liu B, Kabra S, Attallah MM, Liu Y (2020) Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15 K. Scr Mater 178:166–170. https://doi.org/10.1016/j.scriptamat.2019.11.026

    Article  CAS  Google Scholar 

  47. Asghari-Rad P, Nili-Ahmadabadi M, Shirazi H, Hossein Nedjad S, Koldorf S (2017) A significant improvement in the mechanical properties of AISI 304 stainless steel by a combined rcsr and annealing process. Adv Eng Mater 19:1600663. https://doi.org/10.1002/adem.201600663

    Article  CAS  Google Scholar 

  48. Olson GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6:791–795. https://doi.org/10.1007/BF02672301

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT of Korea (2021R1A2C3006662). Dr. F. Haftlang is also supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2020H1D3A1A04105882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 764 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haftlang, F., Kwon, J., Moon, J. et al. Excellent combination of cryogenic strength and ductility of a metastable Fe65Ni15Co8Mn8Ti3Si medium entropy alloy through the exceptional deformation-induced martensitic transformation. J Mater Sci 57, 18062–18074 (2022). https://doi.org/10.1007/s10853-022-07400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07400-8

Navigation