Skip to main content
Log in

Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multi-phase structure alloys have been widely used in superplasticity deformation due to their ability to inhibit grain growth. However, the current study on multi-phase structure alloys has mainly indicated static grain growth than dynamic grain growth. Dynamic grain growth plays an important role in superplastic deformation because it leads to strain hardening, limiting superplastic elongation. In this research, the Al0.5CoCrFeMnNi high-entropy alloy (HEA) was annealed at 1473 K for 2 h to form a single-phase FCC microstructure, then subjected to high-pressure torsion (HPT) for grain refinement. This HEA achieved high-strain rate superplasticity with an impressive elongation of 1100% under a temperature of 1073 K at a strain rate of 10–1 s−1. Comparing the results of the present study with a previous work published on the same HEA reveals the impact of initial annealing on the superplastic response. It is suggested that the initial B2, formed during the annealing stage before the HPT process, effectually limits the dynamic grain growth, resulting in remarkably enhanced superplasticity. This investigation introduces the new microstructural evolution to uplift superplasticity in multi-phase structures with dynamic grain growth elimination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010. https://doi.org/10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  2. McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK (1999) Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398:684–686. https://doi.org/10.1038/19486

    Article  CAS  Google Scholar 

  3. Langdon TG (2006) Grain boundary sliding revisited: Developments in sliding over four decades. J Mater Sci 41:597–609. https://doi.org/10.1007/s10853-006-6476-0

    Article  CAS  Google Scholar 

  4. Liu FC, Ma ZY (2010) Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr Mater 62:125–128. https://doi.org/10.1016/j.scriptamat.2009.10.010

    Article  CAS  Google Scholar 

  5. Alabort E, Barba D, Shagiev MR, Murzinova MA, Galeyev RM, Valiakhmetov OR, Aletdinov AF, Reed RC (2019) Alloys-by-design: Application to titanium alloys for optimal superplasticity. Acta Mater 178:275–287. https://doi.org/10.1016/j.actamat.2019.07.026

    Article  CAS  Google Scholar 

  6. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. https://doi.org/10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  7. Langdon TG (1994) An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater Sci Eng A 174:225–230. https://doi.org/10.1016/0921-5093(94)91092-8

    Article  Google Scholar 

  8. Venkataraman A, Linne M, Daly S, Sangid MD (2019) Criteria for the prevalence of grain boundary sliding as a deformation mechanism. Materialia 8:100499. https://doi.org/10.1016/j.mtla.2019.100499

    Article  CAS  Google Scholar 

  9. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) High strain rate superplasticity in a commercial Al–Mg–Sc alloy. Scr Mater 50:511–516. https://doi.org/10.1016/j.scriptamat.2003.10.021

    Article  CAS  Google Scholar 

  10. Barnes AJ (2001) Industrial applications of superplastic forming: trends and prospects. Mater Sci Forum 357–359:3–16. https://doi.org/10.4028/www.scientific.net/MSF.357-359.3

    Article  Google Scholar 

  11. Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  12. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  13. Shaysultanov DG, Stepanov ND, Kuznetsov AV, Salishchev GA, Senkov ON (2013) Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy. JOM 65:1815–1828. https://doi.org/10.1007/s11837-013-0754-5

    Article  CAS  Google Scholar 

  14. Zhang D, Wang S, Qiu C, Zhang W (2012) Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing. Mater Sci Eng A 556:100–106. https://doi.org/10.1016/j.msea.2012.06.063

    Article  CAS  Google Scholar 

  15. Nasiri Z, Ghaemifar S, Naghizadeh M, Mirzadeh H (2021) Thermal mechanisms of grain refinement in steels: a review. Met Mater Int 27:2078–2094. https://doi.org/10.1007/s12540-020-00700-1

    Article  CAS  Google Scholar 

  16. Lin HK, Huang JC, Langdon TG (2005) Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater Sci Eng A 402:250–257. https://doi.org/10.1016/j.msea.2005.04.018

    Article  CAS  Google Scholar 

  17. Asghari-Rad P, Sathiyamoorthi P, Nguyen NTC, Bae JW, Shahmir H, Kim HS (2020) Fine-tuning of mechanical properties in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy through high-pressure torsion and annealing. Mater Sci Eng A 771:138604. https://doi.org/10.1016/j.msea.2019.138604

    Article  CAS  Google Scholar 

  18. Asghari-Rad P, Sathiyamoorthi P, Nguyen NTC, Zargaran A, Kim TS, Kim HS (2021) A powder-metallurgy-based fabrication route towards achieving high tensile strength with ultra-high ductility in high-entropy alloy. Scr Mater 190:69–74. https://doi.org/10.1016/j.scriptamat.2020.08.038

    Article  CAS  Google Scholar 

  19. Hadi S, Rahimzadeh Lotfabad F, Paydar MH, Ebrahimi F (2021) New mathematical stress analysis in the compressive stage of the high-pressure torsion process. Met Mater Int 27:2947–2956. https://doi.org/10.1007/s12540-020-00881-9

    Article  CAS  Google Scholar 

  20. Coury FG, Zepona G, Bolfarini C (2021) Multi-principal element alloys from the CrCoNi family: outlook and perspectives. J Mater Res Technol 15:3461–3480. https://doi.org/10.1016/j.jmrt.2021.09.095

    Article  CAS  Google Scholar 

  21. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  22. Otto F, Dlouhý A, Pradeep KG, Kuběnová M, Raabe D, Eggeler G, George EP (2016) Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater 112:40–52. https://doi.org/10.1016/j.actamat.2016.04.005

    Article  CAS  Google Scholar 

  23. Miracle D (2019) High entropy alloys as a bold step forward in alloy development. Nat Commun 10:1805. https://doi.org/10.1038/s41467-019-09700-1

    Article  CAS  Google Scholar 

  24. Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  25. Yi J, Yang L, Wang L, Xu M (2022) Lightweight, refractory high-entropy alloy, CrNbTa0.25TiZr, with high yield strength. Met Mater Int 28:448–455. https://doi.org/10.1007/s12540-021-01059-7

    Article  CAS  Google Scholar 

  26. Wang H, Hu Z, Cao J, Zhang S, Cheng T, Wang Q (2022) Hot deformation and workability of a CrCoNi medium entropy alloy. Met Mater Int 28:514–522. https://doi.org/10.1007/s12540-021-01057-9

    Article  Google Scholar 

  27. Reddy S, Bapari S, Bhattacharjee PP, Chokshi A (2017) Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy. Mater Res Lett 5:408–414. https://doi.org/10.1080/21663831.2017.1305460

    Article  CAS  Google Scholar 

  28. Shahmir H, Nili-Ahmadabadi M, Shafiee A, Langdon TG (2018) Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater Sci Eng A 718:468–476. https://doi.org/10.1016/j.msea.2018.02.002

    Article  CAS  Google Scholar 

  29. Nguyen NTC, Moon J, Sathiyamoorthi P, Asghari-Rad P, Kim GH, Lee CS, Kim HS (2019) Superplasticity of V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy processed using high-pressure torsion. Mater Sci Eng A 764:138198. https://doi.org/10.1016/j.msea.2019.138198

    Article  CAS  Google Scholar 

  30. Shahmir H, He J, Lu Z, Kawasaki M, Langdon TG (2017) Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater Sci Eng A 685:342–348. https://doi.org/10.1016/j.msea.2017.01.016

    Article  CAS  Google Scholar 

  31. Nguyen TCN, Asghari-Rad P, Sathiyamoorthi P, Zargaran A, Lee CS, Kim HS (2020) Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat Commun 11:1–7. https://doi.org/10.1038/s41467-020-16601-1

    Article  CAS  Google Scholar 

  32. Asghari-Rad P, Nguyen TCN, Zargaran A, Sathiyamoorthi P, Kim HS (2022) Deformation-induced grain boundary segregation mediated high-strain rate superplasticity in medium entropy alloy. Scr Mater 207:114239. https://doi.org/10.1016/j.scriptamat.2021.114239

    Article  CAS  Google Scholar 

  33. Nguyen NTC, Asghari-Rad P, Bae JW, Sathiyamoorthi P, Kim HS (2021) Superplastic behavior in high-pressure torsion-processed Mo7.5Fe55Co18Cr12.5Ni7 medium-entropy alloy. Metall Mater Trans A 52:1–7. https://doi.org/10.1007/s11661-020-06033-3

    Article  CAS  Google Scholar 

  34. Sohn SS, Kim DG, Jo YH, da Silva AK, Lu W, Breen AJ, Gault B, Ponge D (2020) High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases. Acta Mater 194:106–117. https://doi.org/10.1016/j.actamat.2020.03.048

    Article  CAS  Google Scholar 

  35. Nguyen NTC, Asghari-rad P, Zargaran A, Kim ES, Sathiyamoorthi P, Kim HS (2022) Relation of phase fraction to superplastic behavior of multi-principal element alloy with a multi-phase structure. Scr Mater (Accepted). https://doi.org/10.1016/j.scriptamat.2022.114949

    Article  Google Scholar 

  36. Jeong HT, Kim WJ (2021) Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment. J Mater Sci Technol 71:228–240. https://doi.org/10.1016/j.jmst.2020.07.017

    Article  CAS  Google Scholar 

  37. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) High-entropy alloy: challenges and prospects. Mater Today 19:349–362. https://doi.org/10.1016/j.mattod.2015.11.026

    Article  CAS  Google Scholar 

  38. Reddy TS, Wani IS, Bhattacharjee Y, Reddy SR, Saha R, Bhattacharjeea PP (2017) Severe plastic deformation driven nanostructure and phase evolution in a Al0.5CoCrFeMnNi dual phase high entropy alloy. Intermetallics 91:150–157. https://doi.org/10.1016/j.intermet.2017.09.002

    Article  CAS  Google Scholar 

  39. He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP (2014) Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater 62:105–113. https://doi.org/10.1016/j.actamat.2013.09.037

    Article  CAS  Google Scholar 

  40. Park JM, Moon J, Bae JW, Kim DH, Jo YH, Lee SH, Kim HS (2019) Role of BCC phase on tensile behavior of dual-phase Al0.5CoCrFeMnNi high-entropy alloy at cryogenic temperature. Mater Sci Eng A 746:443–447. https://doi.org/10.1016/j.msea.2019.01.041

    Article  CAS  Google Scholar 

  41. Kim WJ, Jeong HT, Park HK, Park K, Na TW, Choi E (2019) The effect of Al to high-temperature deformation mechanisms and processing maps of Al0.5CoCrFeMnNi high entropy alloy. J Alloys Compd 802:152–165. https://doi.org/10.1016/j.jallcom.2019.06.099

    Article  CAS  Google Scholar 

  42. Jeong HT, Kim WJ (2021) Calculation and construction of deformation mechanism maps and processing maps for CoCrFeMnNi and Al0.5CoCrFeMnNi high-entropy alloys. J Alloys Compd 869:159256. https://doi.org/10.1016/j.jallcom.2021.159256

    Article  CAS  Google Scholar 

  43. Jeong HT, Park HK, Kim WJ (2022) Class I type creep behavior of coarse-grained Al0.5CoCrFeMnNi high entropy alloy. Mater Sci Eng A 845:143239. https://doi.org/10.1016/j.msea.2022.143239

    Article  CAS  Google Scholar 

  44. Uporova SA, Ryltseva RE, Bykov VA, Estemirova SKh, Zamyatin DA (2020) Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy. J Alloys Compd 820:153228. https://doi.org/10.1016/j.jallcom.2019.153228

    Article  CAS  Google Scholar 

  45. Moon J, Bae JW, Jang MJ, BaeK SM, Yim D, Lee BJ, Kim HS (2018) Effects of homogenization temperature on cracking during cold-rolling of Al0.5CoCrFeMnNi high-entropy alloy. Mater Chem Phys 210:187–191. https://doi.org/10.1016/j.matchemphys.2017.06.043

    Article  CAS  Google Scholar 

  46. Han J, Kang SH, Lee SJ, Kawasaki M, Lee HJ, Ponge D, Raabe D, Lee YK (2017) Superplasticity in a lean Fe–Mn–Al steel. Nat Commun 8:1–6. https://doi.org/10.1038/s41467-017-00814-y

    Article  CAS  Google Scholar 

  47. Jéhanno P, Heilmaier M, Saage H, Heyse H, Böning M, Kestler H, Schneibel JH (2006) Superplasticity of a multiphase refractory Mo–Si–B alloy. Scr Mater 55:525–528. https://doi.org/10.1016/j.scriptamat.2006.05.033

    Article  CAS  Google Scholar 

  48. Li Z, Yu J, Zheng X, Zhang J, Liu H, Bai R, Wang H, Wang D, Wang W (2011) Superplasticity of a multiphase fine-grained Mo–Si–B alloy. Powder Technol 214:54–56. https://doi.org/10.1016/j.powtec.2011.07.033

    Article  CAS  Google Scholar 

  49. Mohamed FA, Li Y (2001) Creep and superplasticity in nanocrystalline materials: current understanding and future prospects. Mater Sci Eng A 298:1–15. https://doi.org/10.1016/S0928-4931(00)00190-9

    Article  Google Scholar 

  50. McFadden S, Valiev R, Mukherjee A (2001) Superplasticity in nanocrystalline Ni3Al. Mater Sci Eng A 319:849–853. https://doi.org/10.1016/S0921-5093(01)01098-X

    Article  Google Scholar 

  51. Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippane R, Hohenwarter A (2015) Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96:258–268. https://doi.org/10.1016/j.actamat.2015.06.025

    Article  CAS  Google Scholar 

  52. Wu X, Zhu Y (2017) Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett 5:527–532. https://doi.org/10.1080/21663831.2017.1343208

    Article  CAS  Google Scholar 

  53. Huang L, Qi F, Yu L, Xin X, Liu F, Sun W, Hu Z (2015) Necking behavior and microstructural evolution during high strain rate superplastic deformation of IN718 superalloy. Mater Sci Eng A 634:71–76. https://doi.org/10.1016/j.msea.2015.03.031

    Article  CAS  Google Scholar 

  54. Leng Z, Zhang J, Lin H, Fei P, Zhang L, Liu S, Zhang M, Wu R (2015) Superplastic behavior of extruded Mg–9RY–4Zn alloy containing long period stacking ordered phase. Mater Sci Eng A 576:202–206. https://doi.org/10.1016/j.msea.2013.04.005

    Article  CAS  Google Scholar 

  55. Langdon TG (1982) Fracture processes in superplastic flow. Met Sci 16:175–183. https://doi.org/10.1179/030634582790427208

    Article  Google Scholar 

  56. Masuda H, Kanazawa T, Tobe H, Sato E (2018) Dynamic anisotropic grain growth during superplasticity in Al–Mg–Mn alloy. Scr Mater 147:84–87. https://doi.org/10.1016/j.scriptamat.2018.02.021

    Article  CAS  Google Scholar 

  57. Chuvil’deev VN, Gryaznov MY, Shotin SV, Kopylov VI, Nokhrin AV, Likhnitskii CV, Murashov AA, Bobrov AA, Tabachkova NY, Pirozhnikova OE (2021) Investigation of superplasticity and dynamic grain growth in ultrafine-grained Al–0.5% Mg–Sc alloys. J Alloys Compd 877:160099. https://doi.org/10.1016/j.jallcom.2021.160099

    Article  CAS  Google Scholar 

  58. Watts BM, Stowell MJ, Cottingham DM (1971) The variation in flow stress and microstructure during superplastic deformation of the Al-Cu eutectic. J Mater Sci 6:228–237. https://doi.org/10.1007/BF00550018

    Article  CAS  Google Scholar 

  59. Rabinovich MK, Trifonov VG (1996) Dynamic grain growth during superplastic deformation. Acta Mater 44:2073–2078. https://doi.org/10.1016/1359-6454(95)00263-4

    Article  CAS  Google Scholar 

  60. Cao FR, Ding H, Li YL, Zhou G, Cui JZ (2010) Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium–lithium alloys. Mater Sci Eng A 527:2335–2341. https://doi.org/10.1016/j.msea.2009.12.029

    Article  CAS  Google Scholar 

  61. Wilkinson DS, Caceres CH (1984) On the mechanism of strain-enhanced grain growth during superplastic deformation. Acta Metall 32:1335–1345. https://doi.org/10.1016/0001-6160(84)90079-8

    Article  CAS  Google Scholar 

  62. Kim BN, Hiraga K, Morita K, Sakka Y (2001) A high-strain-rate superplastic ceramic. Nature 413:288–291. https://doi.org/10.1038/35095025

    Article  CAS  Google Scholar 

  63. Kim BN, Hiraga K (2002) Superplastic ceramic deformable at high strain rates. Chem Eng Tech 25:1021–1023. https://doi.org/10.1002/1521-4125(20021008)25:10%3c1021::AID-CEAT1021%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  64. Suryanarayana C, Al-Joubori AA, Wang Z (2022) Nanostructured materials and nanocomposites by mechanical alloying: an overview. Met Mater Int 28:41–53. https://doi.org/10.1007/s12540-021-00998-5

    Article  CAS  Google Scholar 

  65. Mayo MJ (1997) High and low temperature superplasticity in nanocrystalline materials. Nanostruct Mater 9:717–726. https://doi.org/10.1016/S0965-9773(97)00158-X

    Article  CAS  Google Scholar 

  66. Mishra RS, Valiev RZ, McFadden SX, Islamgaliev, RK, Mukherjee AK (2001) High-strain-rate superplasticity from nanocrystalline Al alloy 1420 at low temperatures. Philos Mag A 81:37–48. https://doi.org/10.1080/01418610108216616

    Article  CAS  Google Scholar 

  67. Sato E, Kuribayashi K (1993) Superplasticity and deformation induced grain growth. ISIJ Int 33:825–832. https://doi.org/10.2355/isijinternational.33.825

    Article  CAS  Google Scholar 

  68. Hyde KB, Bate PS (2005) Dynamic grain growth in Al–6Ni: modelling and experiments. Acta Mater 53:4313–4321. https://doi.org/10.1016/j.actamat.2005.05.029

    Article  CAS  Google Scholar 

  69. Maier-Kiener V, Durst K (2017) Advanced nanoindentation testing for studying strain-rate sensitivity and activation volume. JOM 69:2246–2255. https://doi.org/10.1007/s11837-017-2536-y

    Article  Google Scholar 

  70. Nazzal M, Khraisheh M, Abu-Farha FK (2007) The effect of strain rate sensitivity evolution on deformation stability during superplastic forming. Mater Process Technol 191:189–192. https://doi.org/10.1016/j.jmatprotec.2007.03.097

    Article  CAS  Google Scholar 

  71. Kapoor R (2017) Severe plastic deformation of materials. Materials under extreme conditions: recent trends and future prospects. Elseviver pp 717–754. https://doi.org/10.1016/B978-0-12-801300-7.00020-6

  72. Wei Q, Cheng S, Ramesh K, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A 381:71–79. https://doi.org/10.1016/j.msea.2004.03.064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2022R1A5A1030054). The authors acknowledge the technical support from Professor Chong Soo Lee, Mr. Geon Hyeong Kim, and Mr. Gyeong Hyeon Jang from Materials Reliability Laboratory, Graduate Institute of Ferrous & Energy Materials Technology (GIFT), Pohang University of Science and Technology, Pohang, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peyman Asghari-Rad or Hyoung Seop Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.TC., Asghari-Rad, P., Park, H. et al. Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing. J Mater Sci 57, 18154–18167 (2022). https://doi.org/10.1007/s10853-022-07616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07616-8

Navigation