Skip to main content

Advertisement

Log in

Toward Greener Polymeric Blends: Study of PBAT/Thermoplastic Whey Protein Isolate/Beeswax Blends

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work evaluated the effects of partial substitution of PBAT by thermoplastic whey protein isolate (WPIT) with addition of beeswax through blends processing and their morphological, mechanical, structural, thermal and rheological properties. Whey protein isolate (WPI) was denatured at 90 °C, using glycerol as plasticizer, to be transformed in a thermoplastic material and subsequently blended with PBAT using a torque rheometer at 130 °C. Addition of 10 and 30% of WPIT in the PBAT matrix was investigated with and without beeswax. Blends were pressed as films with ~ 320 µm of thickness. Scanning electron microscopy (SEM) analysis of PBAT/WPIT blends films revealed the presence of domains. These domains are compounded of whey protein, while at the continuous phase a moderate degree of mixture between PBAT and WPIT was observed by Raman analyses. WPIT did not alter the degree of crystallinity and the glass-transition temperature (Tg) of the PBAT in the blends. Thermogravimetric curves of the blends showed decomposition stages related to WPIT and PBAT phases. Thermal stability of blends decreased in comparison to WPIT, which was associated to the cleavage of disulfide bonds of WPIT during processing and causes other kind of interaction between components. Besides, blends containing WPIT remained non-rigid polymers with Young’s modulus below 70 MPa. The tensile strength and elongation at break decreased due the presence of WPIT. Beeswax did not influence the thermal and mechanical properties explored in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mei LHI (2016) Bioplásticos: Biodegradáveis & Biobased—definições, fontes e aplicações. Editora da UNICAMP, Campinas

    Google Scholar 

  2. Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A, Noller K (2012) Int J Polym Sci 1:7

    Google Scholar 

  3. Chen F, Zhang J (2009) Polymer 3770:3777

    Google Scholar 

  4. Pervaiz M, Oakley P, Sain M (2014) Int J Compos Mater 204:212

    Google Scholar 

  5. Muthuraj R, Misra M, Mohanty AK (2018) J Appl Polym Sci 1:35

    Google Scholar 

  6. Cinelli P, Schmid M, Bugnicourt E, Wildner J, Bazzichi A, Anguillesi I, Lazzeri A (2014) Polym Degrad Stab 151:157

    Google Scholar 

  7. Schmid M, Hammann F, Winkler H (2013) Packag Technol Sci 521:533

    Google Scholar 

  8. Hernandez-Izquierdo VM, Krochta JM (2009) Packag Technol Sci 255:260

    Google Scholar 

  9. Hernandez-Izquierdo VM, Reid DS, Mchugh TH, DE Berrios JJ, Krochta JM (2008) J Food Sci 169:175

    Google Scholar 

  10. Schmid M, Pröls S, Kainz DM, Hammann F, Grupa Uwe (2016) Prog Org Coat 161:172

    Google Scholar 

  11. Schmid M, Muller K, Sangerlaub S, Stabler A, Starck V, Ecker F, Noller K (2014) J Appl Polym Sci 1:9

    Google Scholar 

  12. Bier JM, Verbeek CJR, Lay MC (2014) Macromol Mater Eng 524:539

    Google Scholar 

  13. Verbeek CJR, van den Berg LE (2010) Macromol Mater Eng 10:21

    Google Scholar 

  14. Utracki LA (2002) Polymer blends handbook. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  15. Passador FR, Pessan LA, Rodolfo JRA (2006) Polímeros 16:174–181

    Article  CAS  Google Scholar 

  16. Huang H-X (2011) In: Boudenne A, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems. John Wiley & Sons Ltd, New Jersey

    Google Scholar 

  17. Ajji A (2002) In: Utracki LA (ed) Polymer blends handbook. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  18. Li H, Hu G-H (2001) J Polym Sci 601:610

    Google Scholar 

  19. Lin B, Sundararaj U, Mighri F, Huneault MA (2003) Polym Eng Sci 891:904

    Google Scholar 

  20. Smith MJ, Verbeek CJR (2018) Adv Polym Technol 2354:2366

    Google Scholar 

  21. Schmid M, Herbst C, Müller K, Stäbler A, Schlemmer D, Coltelli M-B, Lazzeri A (2016) Polym-Plast Technol 510:517

    Google Scholar 

  22. Azevedo VM, Borges SV, Marconcini JM, Yoshida MI, Neto ARS, Pereira TC, Pereira CFG (2017) Carbohydr Polym 971:980

    Google Scholar 

  23. Schmid M, Muller K, Sangerlaub S, Stabler A, Starck V, Ecker F, Noller K (2014) J Appl Polym Sci 1:9

    Google Scholar 

  24. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer W-D, Müller R-J (2001) Chemosphere 289:299

    Google Scholar 

  25. Chivrac F, Kadlecová Z, Pollet E, Avérous L (2006) J Polym Environ 393:401

    Google Scholar 

  26. Li G, Shankar S, Rhim J-W, Oh B-Y (2015) Food Sci Biotechnol 1679:1685

    Google Scholar 

  27. Mondal D, Bhowmick B, Mollick MMR, Maity D, Saha NR, Rangarajan V, Rana D, Sen R, Chattopadhyay D (2014) J Appl Polym Sci 1:9

    Google Scholar 

  28. Herrera R, Franco L, Rodriguez-Galan A, Puiggali J (2002) J Polym Sci A 1(4141):4157

    Google Scholar 

  29. Chen F, Zhang J (2010) Polymer 1812:1819

    Google Scholar 

  30. Guo G, Zhang C, Du Z, Zou W, Tian H, Xiang A, Li H (2015) Ind Crop Prod 731:736

    Google Scholar 

  31. McHugh TH, Avena-Bustillos FL, Krochta JM (1993) J Food Sci 899:903

    Google Scholar 

  32. Nelson DL, Cox M (2002) Lehninger—Princípios de Bioquímica. Sarvier, São Paulo

    Google Scholar 

  33. Lim JH, Kim JA, Ko JA, Park HJ (2015) J Food Sci 2471:2477

    Google Scholar 

  34. BASF (2013) Product Information—ecoflex® F Blend C1200—Biodegradable polyester for compostable film 1:3

  35. Krevelen DWV, Nijenhuis KT (2009) Properties of polymers their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Google Scholar 

  36. Mesic B, Lestelius M, Engström G (2006) Packag Technol Sci 61:70

    Google Scholar 

  37. Wu S (1971) J Polym Sci 19:30

    Google Scholar 

  38. American Society for Testing and Material ASTM E2550-11 (2011) Standard Test Method for Thermal Stability by Thermogravimetry

  39. American Society for Testing and Material ASTM D882-12 (2012) Standard Test Method for Tensile Properties of Thin Plastic Sheeting

  40. Coleman MM, Serman CJ, Bhagwagar DE, Painter PC (1990) Polymer 1187:1203

    Google Scholar 

  41. Corradini E, Carvalho AJF, Curvelo AAS, Agnelli JAM, Mattoso LHC (2007) Mater Res 227:231

    Google Scholar 

  42. Almeida TG, Neto JES, Costa ARM, Silva AS, Carvalho LH, Canedo EL (2016) Polym Test 204:211

    Google Scholar 

  43. Incarnato L, Scarfato P, Di Maio L, Acierno D (2000) Polymer 6825:6831

    Google Scholar 

  44. Bretas RES, D´Ávila MA (2005) Reologia de Polímeros Fundidos EDUFScar. São Carlos

  45. Bigg DM (1983) Polym Eng Sci 206:210

    Google Scholar 

  46. Favis BD, Chalifoux JP (1987) Polym Eng Sci 1591:1600

    Google Scholar 

  47. Everaert V, Aerts L, Groeninckx G (1999) Polymer 6627:6644

    Google Scholar 

  48. Ghodgaonkar PG, Sundararaj U (1996) Polym Eng Sci 1656:1665

    Google Scholar 

  49. Smith MJ, Verbeek CJR (2018) Adv Polym Technol 1886:1896

    Google Scholar 

  50. Guerrica-Echevarrıa G, Eguiazábal JI, Nazábal J (2000) Polym Test 849:854

    Google Scholar 

  51. Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X (2011) Food Hydrocoll 1098:1104

    Google Scholar 

  52. Ngarize S, Adams A, Howell NK (2004) Food Hydrocoll 49:59

    Google Scholar 

  53. Wang Q, He L, Labuza TP, Ismail B (2013) Food Chem 313:319

    Google Scholar 

  54. Blanpain-Avet P, Hédoux A, Guinet Y, Paccou L, Petit J, Six T, Delaplace G (2012) J Food Eng 86:94

    Google Scholar 

  55. Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX (2013) Food Hydrocoll 110:122

    Google Scholar 

  56. Nobrega MM, Olivato JB, Müller CMO, Yamashita F (2012) Polímeros 475:480

    Google Scholar 

  57. Cai Y, Lv DJ, Feng J, Liu Y, Wang Z, Zhao M, Shi R (2017) Spectrosc Lett 280:284

    Google Scholar 

  58. Lin-Vien D et al (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, Boston

    Google Scholar 

  59. Visschers RW, Jongh HHJ (2005) Biotechnol Adv 75:80

    Google Scholar 

  60. Canevarolo SV (2004) Técnicas de Caracterização de Polímeros. Editora Artliber, São Paulo

    Google Scholar 

  61. Barreto PLM, Pires ATN, Soldi V (2003) Polym Degrad Stab 147:152

    Google Scholar 

  62. Sangroniz A, Gonzalez A, Martin L, Irusta L, Iriarte M, Etxeberria A (2018) Polym Degrad Stab 25:35

    Google Scholar 

  63. American Society for Testing and Material ASTM D883-12 (2012) Standard Terminology Relating to Plastics

Download references

Acknowledgements

The authors acknowledge the Brazilian Nanotechnology National Laboratory (LNNano/CNPEM) for the use of materials characterization (SEM, TG and DSC) and polymers processing facilities. National System of Laboratories for Nanotechnology (SisNANO/MCTI) is also acknowledged for its financial support in infrastructure and equipment at the LNNano. MFCA thanks CNPq (process number 163257/2015-9) for the fellowship. Ivanei Pinheiro, Mariane Pereira, Elizabeth Sanches, Renata Brandão, Mayara Calderaro, and Patrícia Souza are thanked for they support on materials analyses and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Fernandes Cosate de Andrade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosate de Andrade, M.F., Strauss, M. & Morales, A.R. Toward Greener Polymeric Blends: Study of PBAT/Thermoplastic Whey Protein Isolate/Beeswax Blends. J Polym Environ 27, 2131–2143 (2019). https://doi.org/10.1007/s10924-019-01502-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01502-2

Keywords

Navigation