Skip to main content
Log in

Thermal Versus High Hydrostatic Pressure Treatments on Calcium-added Soybean Proteins. Protein Solubility, Colloidal Stability and Cold-set Gelation

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The effects of thermal treatment (TT) and high hydrostatic pressure treatment (HHPT) on calcium-added soybean protein 1% (w/w) aqueous dispersions at pH 7.0 were compared. High hydrostatic pressure, but not thermal treatment, improved protein solubility and colloidal stability. Despite the fact that the glycinin solubility is more affected by calcium than that of β-conglycinin, glycinin could remain in dispersion in the presence of calcium when denatured by HHPT (calcium added before or after treatment), but not when denatured by TT or without denaturing treatment. Thus, polypeptide composition of soluble aggregates depended on type of treatment. Colloidal stability and molecular weight of soluble aggregates depended on the order of application of calcium and denaturing treatment: when calcium was present during either HHPT or TT, the dispersions had higher stability and higher proportion of soluble aggregates with high molecular weight than when calcium was added after treatments. After freeze drying and re-dispersing at higher protein content (10% w/w) calcium-added dispersions subjected to HHPT formed cold-set gels that were transparent and exhibited excellent water holding capacity. Our results provide the basis for the development of ready-to-use functional ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.K. Rastogi, K.S.M.S. Raghavarao, V.M. Balasubramaniam, K. Niranjan, D. Knorr, Crit. Rev. Food Sci. Nutr. 47, 69 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. B.B. Boonyaratanakornkit, C.B. Park, D.S. Clark, Biochim. Biophys. Acta 1595, 235 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. E. Molina, A. Papadopoulou, D.A. Ledward, Food Hydrocoll. 15, 263 (2001)

    Article  CAS  Google Scholar 

  4. R. Lakshmanan, M. de Lamballerie, S. Jung, Food Eng Phys Prop 71, 384 (2006)

    Google Scholar 

  5. K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. 39, 301 (2014)

    Article  CAS  Google Scholar 

  6. N. Chen, M. Zhao, F. Niepceron, T. Nicolai, C. Chassenieux, Food Hydrocoll. 66, 27 (2017)

    Article  CAS  Google Scholar 

  7. A. Scilingo, M.C. Añón, J. Am. Oil Chem. Soc. 81, 63 (2004)

    Article  CAS  Google Scholar 

  8. M.C. Añón, M. de Lamballerie, F. Speroni, Innov. Food Sci. Emerg. Technol. 16, 155 (2012)

    Article  CAS  Google Scholar 

  9. C.A. Manassero, S. Vaudagna, M.C. Añón, F. Speroni, Food Hydrocoll. 43, 629 (2015)

    Article  CAS  Google Scholar 

  10. C.A. Manassero, S. Vaudagna, A.M. Sancho, M.C. Añón, F. Speroni, Innov. Food Sci. Emerg. Technol. 35, 86 (2016)

    Article  CAS  Google Scholar 

  11. F. Speroni, V. Milesi, M.C. Añón, LWT-Food SciTech 43, 1265 (2010)

    Article  CAS  Google Scholar 

  12. AOAC, Official Methods of Analysis, 15th Edn (Association of Official Analytical Chemists, Washington, 1990)

    Google Scholar 

  13. M.C. Añón, M. de Lamballerie, F. Speroni, Innov. Food Sci. Emerg. Technol. 12, 443 (2011)

    Article  CAS  Google Scholar 

  14. J.M.S. Renkema, H. Gruppen, T. Van Vliet, J. Agric. Food Chem. 50, 6064 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. A.G. Appu Rao, M.S. Narasinga Rao, J. Agric. Food Chem. 24, 490 (1976)

    Article  CAS  PubMed  Google Scholar 

  16. R.D. Kroll, Cereal Chem. 61, 490 (1984)

    CAS  Google Scholar 

  17. C.A. Manassero, E. David-Briand, S.R. Vaudagna, M. Anton, F. Speroni, Food Bioprocess Tech 11, 1125 (2018)

    Article  CAS  Google Scholar 

  18. C.P. Samaranayake, S.K. Sastry, Innov. Food Sci. Emerg. Technol. 17, 22 (2013)

    Article  CAS  Google Scholar 

  19. V.V. Mozhaev, K. Heremans, J. Frank, P. Masson, C. Balny, Protein Struct Funct Genet 24, 81 (1996)

    Article  CAS  Google Scholar 

  20. D.B. Yuan, X.-Q. Yang, C.-H. Tang, W. Z-X Zheng, I. Min, S.-W. Ahmad, Yin Food Res Int 42, 700 (2009)

    Article  CAS  Google Scholar 

  21. S. Petruccelli, M.C. Añón, J. Agric. Food Chem. 43, 3035 (1995)

    Article  CAS  Google Scholar 

  22. A. Maltais, G.E. Remondetto, R. Gonzalez, M. Subirade, J. Food Sci. 70, 67 (2005)

    Article  Google Scholar 

  23. F. Speroni, M.C. Añón, Food Hydrocoll. 33, 85 (2013)

    Article  CAS  Google Scholar 

  24. T.C. Brito-Oliveira, M. Bispo, I.C.F. Moraes, O.H. Campanella, S.C. Pinho, Food Biophys 13, 226 (2018)

    Article  Google Scholar 

  25. A.M. Hermansson, J. Am. Oil Chem. Soc. 63, 658 (1986)

    Article  CAS  Google Scholar 

  26. A.J. Pastorino, C.L. Hansen, D.J. McMahon, J. Dairy Sci. 86, 60 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. A.H. Clark, S.B. Ross-Murphy, Gels. Adv. Polym. Sci. 83, 60 (1987)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Claudio Sanow from the Instituto de Tecnología de Alimentos, INTA, for his kind assistance during the use of the HHPT equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Speroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccini, L., Scilingo, A. & Speroni, F. Thermal Versus High Hydrostatic Pressure Treatments on Calcium-added Soybean Proteins. Protein Solubility, Colloidal Stability and Cold-set Gelation. Food Biophysics 14, 69–79 (2019). https://doi.org/10.1007/s11483-018-9558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9558-z

Keywords

Navigation