Skip to main content
Log in

Development of Quantitative Structure-Property Relationship (QSPR) Models of Aspartyl-Derivatives Based on Eigenvalues (EVA) of Calculated Vibrational Spectra

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In present study, validated linear quantitative structure-property (sweetness) relationship (QSPR) models were developed, based on an experimental sweetness index and the calculated vibrational spectra of 158 aspartyl-derivatives. The quantum chemical AM1 method was applied to calculate the vibrational spectra of the compounds. The EVA descriptors were derived from the vibrational spectra for a combination of various values of σ (2.5, 5, 10,20 and 40 cm−1) and L (5, 10, 20 and 40 cm−1), which were correlated with an experimental sweetness index of the compounds using the multiple linear regression method. Several QSPR equations were constructed and analyzed. Among the various combinations, the statistically best QSPR equations were achieved when σ =10 and L = 10 were chosen. Four equations were selected as QSPR models, namely, model_1, model_2, model_3 and model_4. Satisfactory statistical values were found for the fit of the training set, R2=0.618, 0.691, 0.605 and 0.604, internal validation Q2=0.540, 0.647, 0.550 and 0.548, and the external predictive measures for the test set, \( {R}_{pre.}^2 \)=0.614, 0.616, 0.633 and 0.633 were obtained for dubbed 1 to 4 respectively. The application domain of the models was determined. The results of the Y-randomization test of the models support the finding that the statistical values obtained for the QSPR models were not due to just chance. Graphic visualizations of the EVA profiles of some of the selected compounds showed that the presence of hydrophobic moiety in the structure such as those of saturated hydrocarbons, e.g. heptane in ASP_215, tert-butyl in ASP_63, cyclohexane in ASP_201 and pentane in ASP_199, which is related to a high sweetness index, might be monitored in the EVA profiles of aspartyl-derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.H. Lustig, L.A. Schmidt, C.D. Brindis, Nature 482(7383), 27–29 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. G.G. Birch, Biofactors 9(1), 73–80 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States, https://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm397725.htm. Accessed 15/03/2018

  4. E.W. Deutsch, C. Hansch, Nature 211(5044), 75 (1966)

    Article  CAS  PubMed  Google Scholar 

  5. A. Van der Heijden, L. Brussel, H. Peer, Chem. Senses 4(2), 141–152 (1979)

    Article  Google Scholar 

  6. H. Iwamura, J. Med. Chem. 23(3), 308–312 (1980)

    Article  CAS  PubMed  Google Scholar 

  7. H. Iwamura, J. Med. Chem. 24(5), 572–583 (1981)

    Article  CAS  PubMed  Google Scholar 

  8. A. Arnoldi, A. Bassoli, G. Borgonovo, M.G. Drew, L. Merlini, G. Morini, J. Agric. Food Chem. 46(10), 4002–4010 (1998)

    Article  CAS  Google Scholar 

  9. A. Bassoli, M.G. Drew, C.K. Hattotuwagama, L. Merlini, G. Morini, G.R. Wilden, Mol. Inf. 20(1), 3–16 (2001)

    CAS  Google Scholar 

  10. A.R. Katritzky, R. Petrukhin, S. Perumal, M. Karelson, I. Prakash, N. Desai, Croat. Chem. Acta 75(2), 475–502 (2002)

    CAS  Google Scholar 

  11. W. Pietrzycki, Pol. J. Chem. 75(10), 1569–1582 (2001)

    CAS  Google Scholar 

  12. W. Pietrzycki, Pol. J. Chem. 77(9), 1163–1173 (2003)

    CAS  Google Scholar 

  13. W.J. Spillane, M.B. Sheahan, J. Chem. Soc. Perkin Trans. 2(7), 741–746 (1989)

    Article  Google Scholar 

  14. M.G. Drew, G.R. Wilden, W.J. Spillane, R.M. Walsh, C.A. Ryder, J.M. Simmie, J. Agric. Food Chem. 46(8), 3016–3026 (1998)

    Article  CAS  Google Scholar 

  15. W.J. Spillane, C.A. Ryder, P.J. Curran, et al., J. Chem. Soc. Perkin Trans. 2(7), 1369–1374 (2000)

    Article  Google Scholar 

  16. W.J. Spillane, C.A. Ryder, M.R. Walsh, P.J. Curran, D.G. Concagh, S.N. Wall, Food Chem. 56(3), 255–261 (1996)

    Article  CAS  Google Scholar 

  17. S.B. Vepuri, N.R. Tawari, M.S. Degani, Mol. Inf. 26(2), 204–214 (2007)

    CAS  Google Scholar 

  18. C.A. Nunes, M.P. Freitas, Eur. Food Res. Technol. 237(4), 565–570 (2013)

    Article  CAS  Google Scholar 

  19. C. Rojas, D. Ballabio, V. Consonni, P. Tripaldi, A. Mauri, R. Todeschini, Theor. Chem. Accounts 135(3), 66 (2016)

    Article  CAS  Google Scholar 

  20. C. Rojas, P. Tripaldi, P.R. Duchowicz, International Journal of Quantitative Structure-Property Relationships (IJQSPR) 1(1), 78–93 (2016)

    Article  Google Scholar 

  21. J.B. Cheron, I. Casciuc, J. Golebiowski, S. Antonczak, S. Fiorucci, Food Chem. 221, 1421–1425 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. P.K. Ojha, K. Roy, Food Chem. Toxicol. 112, 551–562 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. G. Morini, A. Bassoli, P.A. Temussi, J. Med. Chem. 48(17), 5520–5529 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. J. Ahmed, S. Preissner, M. Dunkel, C.L. Worth, A. Eckert, R. Preissner, Nucleic Acids Res. 39(suppl_1), D377–D382 (2010)

    PubMed  PubMed Central  Google Scholar 

  25. Mayank, V. Jaitak, Phytochemistry 116, 12–20 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. R.H. Mazur, J.M. Schlatter, A.H. Goldkamp, J. Am. Chem. Soc. 91(10), 2684–2691 (1969)

    Article  CAS  PubMed  Google Scholar 

  27. C. Toniolo, P. Temussi, Biopolymers 106(3), 376–384 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. M. Zhong, Y. Chong, X. Nie, A. Yan, Q. Yuan, J. Food Sci. 78(9), S1445–S1450 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. C.A. Nunes, M.P. Freitas, LWT-Food Sci. Technol. 51(2), 405–408 (2013)

    Article  CAS  Google Scholar 

  30. A.M. Ferguson, T. Heritage, P. Jonathon, S.E. Pack, L. Phillips, J. Rogan, P.J. Snaith, J. Comput. Aided Mol. Des. 11(2), 143–152 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. S. Gabler, J. Soelter, T. Hussain, S. Sachse, M. Schmuker, Mol. Inf. 32(9–10), 855–865 (2013)

    Article  CAS  Google Scholar 

  32. O. Oltulu, M.M. Yasar, E. Eroglu, Eur. J. Med. Chem. 44(9), 3439–3444 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. C. Liao, A. Xie, L. Shi, J. Zhou, X. Lu, J. Chem. Inf. Comput. Sci. 44(1), 230–238 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. D.B. Sweeteners, http://chemosim.unice.fr/SweetenersDB/. Accessed 15/03/2018

  35. R.W. Kennard, L.A. Stone, Technometrics 11(1), 137–148 (1969)

    Article  Google Scholar 

  36. T. Puzyn, A. Mostrag-Szlichtyng, A. Gajewicz, M. Skrzynski, A.P. Worth, Struct. Chem. 22(4), 795–804 (2011)

    Article  CAS  Google Scholar 

  37. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)

  38. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107(13), 3902–3909 (1985)

    Article  CAS  Google Scholar 

  39. D.B. Turner, P. Willett, Eur. J. Med. Chem. 35(4), 367–375 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. K. Roy, S. Kar, R.N. Das, A Primer on QSAR/QSPR Modeling: Fundamental Concepts (Springer, 2015), pp. 37–59

  41. M. Karelson, U. Maran, Y.L. Wang, A.R. Katritzky, Collect. Czechoslov. Chem. Comun. 64(10), 1551–1571 (1999)

    Article  CAS  Google Scholar 

  42. K. Roy, P. Ambure, S. Kar, P.K. Ojha, J. Chemom. 32, 1–18 (2018)

    Article  CAS  Google Scholar 

  43. P. Gramatica, QSAR Comb. Sci. 26(5), 694–701 (2007)

    Article  CAS  Google Scholar 

  44. J.T. Leonard, K. Roy, QSAR Comb. Sci. 25(3), 235–251 (2006)

    Article  CAS  Google Scholar 

  45. A. Golbraikh, A. Tropsha, Mol. Divers. 5(4), 231–243 (2000)

    Article  CAS  Google Scholar 

  46. M. Snarey, N.K. Terrett, P. Willett, D.J. Wilton, J. Mol. Graph. Model. 15(6), 372–385 (1997)

    Article  CAS  PubMed  Google Scholar 

  47. E. Marengo, R. Todeschini, Chemom. Intell. Lab. Syst. 16(1), 37–44 (1992)

    Article  CAS  Google Scholar 

  48. B. Everitt, Stat. Methods Med. Res. 13(5), 343–345 (2004)

    Article  PubMed  Google Scholar 

  49. A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20(4), 269–276 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. A.C. Atkinson, M. Riani, Chemom. Intell. Lab. Syst. 60(1–2), 87–100 (2002)

    Article  CAS  Google Scholar 

  51. F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni, R. Todeschini, Molecules 17(5), 4791–4810 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. Jaworska, N. Nikolova-Jeliazkova, T. Aldenberg, ATLA Altern. Lab. Anim. 33(5), 445–459 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. K. Baumann, J. Chem. Inf. Comput. Sci. 42(1), 26–35 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. L.N. Ognichenko, V.E. Kuz'min, A.G. Artemenko, QSAR Comb. Sci. 28(9), 939–945 (2009)

    Article  CAS  Google Scholar 

  55. J.J. Sutherland, L.A. O'Brien, D.F. Weaver, J. Med. Chem. 47(22), 5541–5554 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. R.S. Shallenberger, T.E. Acree, Nature 216(5114), 480–482 (1967)

    Article  CAS  PubMed  Google Scholar 

  57. L.B. Kier, J. Pharm. Sci. 61(9), 1394–1397 (1972)

    Article  CAS  PubMed  Google Scholar 

  58. K. Roy, P. Ambure, S. Kar, ACS Omega 3(9), 11392–11406 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific Research Projects Coordination Unit of Akdeniz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Eroglu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cam, I.B., Yorulmaz, N., Yasar, M.M. et al. Development of Quantitative Structure-Property Relationship (QSPR) Models of Aspartyl-Derivatives Based on Eigenvalues (EVA) of Calculated Vibrational Spectra. Food Biophysics 14, 300–312 (2019). https://doi.org/10.1007/s11483-019-09577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09577-z

Keywords

Navigation