Skip to main content
Log in

How do Different Types of Emulsifiers/Stabilizers Affect the In Vitro Intestinal Digestion of O/W Emulsions?

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study analyzes the influence of different types of molecules (tween, lecithin, xanthan gum, and methylcellulose) on the physical properties (flow behavior and particle size) and microstructure of oil-in-water (o/w) emulsions before and during in vitro intestinal digestion. The release of free fatty acids during a simulated intestinal stage has also been examined. The results show that various o/w emulsions present different rates and extents of lipolysis and that these differences are not primarily due to their rheological properties nor to the droplet size/surface area available for the action of lipase. Rather, the observed differences in the kinetics of lipolysis are most likely attributable to the nature and location of each type of molecule in their respective o/w emulsions as well as to their interactions with intestinal components. These results shed light on the mechanisms by which the interfacial layer controls lipid digestion, paving the way for a practical application of some of these emulsions in the production of foods used for regulating dietary lipid digestion in order to prevent and treat obesity and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Singh, A. Sarkar, Adv. Colloid Interf. Sci. 165(1), 47–57 (2011)

    Article  CAS  Google Scholar 

  2. D.J. McClements, E.A. Decker, Y. Park, J. Weiss, Food Biophys. 3(2), 219–228 (2008)

    Article  Google Scholar 

  3. H. Singh, A. Ye, D. Horne, Prog. Lipid Res. 48(2), 92–100 (2009)

    Article  CAS  Google Scholar 

  4. M. Golding, T.J. Wooster, Curr. Opin. Colloid Interface Sci. 15(1-2), 90–101 (2010)

    Article  CAS  Google Scholar 

  5. S. Mun, J. Kim, D.J. McClements, Y.-R. Kim, Y. Choi, Food Chem. 219, 297–303 (2017)

    Article  CAS  Google Scholar 

  6. J.E. Norton, P.J. Fryer, I.T. Norton, Formulation Engineering of Foods (John Wiley & Sons, Ltd, Chichester, UK, 2013)

    Book  Google Scholar 

  7. S.J. Hur, B.O. Lim, E.A. Decker, D.J. McClements, Food Chem. 125(1), 1–12 (2011)

    Article  CAS  Google Scholar 

  8. S. Gallier, H. Singh, Lipid Technol. 24(12), 271–273 (2012)

    Article  CAS  Google Scholar 

  9. S.J. Hur, E.A. Decker, D.J. McClements, Food Chem. 114(1), 253–262 (2009)

    Article  CAS  Google Scholar 

  10. M. Espinal-Ruiz, F. Parada-Alfonso, L.-P. Restrepo-Sánchez, C.-E. Narváez-Cuenca, D.J. McClements, Food Funct. 5(12), 3083–3095 (2014)

    Article  CAS  Google Scholar 

  11. D. Qin, X. Yang, S. Gao, J. Yao, D.J. McClements, J. Food Sci. 81(7), C1636–C1645 (2016)

    Article  CAS  Google Scholar 

  12. C. Qiu, M. Zhao, E.A. Decker, D.J. McClements, Food Res. Int. 74, 131–139 (2015)

    Article  CAS  Google Scholar 

  13. J.-M. Li, S.-P. Nie, Food Hydrocoll. 53, 46–61 (2016)

    Article  CAS  Google Scholar 

  14. M. Traynor, R. Burke, J.M. Frías, E. Gaston, C. Barry-Ryan, Int. Food Res. J. 20, 2173–2181 (2013)

    Google Scholar 

  15. E.M. Papalamprou, E.A. Makri, V.D. Kiosseoglou, G.I. Doxastakis, J. Sci. Food Agric. 85(12), 1967–1973 (2005)

    Article  CAS  Google Scholar 

  16. E. Dickinson, Food Hydrocoll. 78, 2–14 (2018)

    Article  CAS  Google Scholar 

  17. E. Dickinson, Food Hydrocoll. 23(6), 1473–1482 (2009)

    Article  CAS  Google Scholar 

  18. M. Karlberg, K. Thuresson, B. Lindman, Colloids Surfaces A Physicochem. Eng. Asp. 262(1-3), 158–167 (2005)

    Article  CAS  Google Scholar 

  19. S. Mezdour, A. Lepine, P. Erazo-Majewicz, F. Ducept, C. Michon, Colloids Surfaces A Physicochem. Eng. Asp. 331(1-2), 76–83 (2008)

    Article  CAS  Google Scholar 

  20. Y. Li, M. Hu, D.J. McClements, Food Chem. 126(2), 498–505 (2011)

    Article  CAS  Google Scholar 

  21. Y. Li, D.J. McClements, J. Agric. Food Chem. 58(13), 8085–8092 (2010)

    Article  CAS  Google Scholar 

  22. M. Hernández-Carrión, I. Hernando, I. Sotelo-Díaz, M.X. Quintanilla-Carvajal, A. Quiles, Innov. Food Sci. Emerg. Technol. 27, 69–78 (2015)

    Article  Google Scholar 

  23. E.K. Silva, M.T.M.G. Rosa, M.A.A. Meireles, Curr. Opin. Food Sci. 5, 50–59 (2015)

    Article  Google Scholar 

  24. A. Sarkar, A. Ye, H. Singh, Food Hydrocoll. 60, 77–84 (2016)

    Article  CAS  Google Scholar 

  25. D.J. McClements, Y. Li, Food Funct. 1(1), 32–59 (2010)

    Article  CAS  Google Scholar 

  26. A. Torcello-Gómez, T.J. Foster, Carbohydr. Polym. 144, 495–503 (2016)

    Article  Google Scholar 

  27. S. Mun, E.A. Decker, D.J. McClements, Food Res. Int. 40(6), 770–781 (2007)

    Article  CAS  Google Scholar 

  28. D.J. McClements, Food Funct. 9(1), 22–41 (2018)

    Article  CAS  Google Scholar 

  29. A.M.R. Pilosof, Food Hydrocoll. 68, 178–185 (2017)

    Article  CAS  Google Scholar 

  30. Y. Chang, D.J. McClements, Food Hydrocoll. 61, 92–101 (2016)

    Article  CAS  Google Scholar 

  31. F.A. Bellesi, M.J. Martinez, V.M. Pizones Ruiz-Henestrosa, A.M.R. Pilosof, Food Hydrocoll. 52, 47–56 (2016)

    Article  CAS  Google Scholar 

  32. M. Espert, J. Borreani, I. Hernando, A. Quiles, A. Salvador, T. Sanz, Food Hydrocoll. 69, 76–85 (2017)

    Article  CAS  Google Scholar 

  33. V.M. Pizones Ruiz-Henestrosa, F.A. Bellesi, N.A. Camino, A.M.R. Pilosof, Food Hydrocoll. 62, 251–261 (2017)

    Article  CAS  Google Scholar 

  34. A. Torcello-Gómez, T.J. Foster, Carbohydr. Polym. 113, 53–61 (2014)

    Article  Google Scholar 

  35. A. Torcello-Gómez, C. Fernández Fraguas, M.J. Ridout, N.C. Woodward, P.J. Wilde, T.J. Foster, Food Funct. 6(3), 730–739 (2015)

    Article  Google Scholar 

  36. R. Zhang, Z. Zhang, H. Zhang, E.A. Decker, D.J. McClements, Food Hydrocoll. 45, 175–185 (2015)

    Article  CAS  Google Scholar 

  37. E. Bouyer, G. Mekhloufi, N. Huang, V. Rosilio, F. Agnely, Colloids Surfaces A Physicochem. Eng. Asp. 433, 77–87 (2013)

    Article  CAS  Google Scholar 

  38. X. Jia, R. Xu, W. Shen, M. Xie, M. Abid, S. Jabbar, P. Wang, X. Zeng, T. Wu, Food Hydrocoll. 43, 275–282 (2015)

    Article  CAS  Google Scholar 

  39. W. Shen, L. Guo, T. Wu, W. Zhang, M. Abid, LWT Food Sci. Technol. 72, 292–301 (2016)

    Article  CAS  Google Scholar 

  40. J. Maldonado-Valderrama, P. Wilde, A. Macierzanka, A. MacKie, Adv. Colloid Interf. Sci. 165(1), 36–46 (2011)

    Article  CAS  Google Scholar 

  41. A. Ye, J. Cui, X. Zhu, H. Singh, Food Chem. 139(1-4), 681–688 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Spanish Ministry of the Economy and Competitiveness for financial support (AGL2015-68923-C2-2-R (MINECO/FEDER)) and gratefully acknowledge the financial support of EU FEDER funds. They would also like to thank Laura Gatzkiewicz for assistance in correcting the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Borreani.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borreani, J., Leonardi, C., Moraga, G. et al. How do Different Types of Emulsifiers/Stabilizers Affect the In Vitro Intestinal Digestion of O/W Emulsions?. Food Biophysics 14, 313–325 (2019). https://doi.org/10.1007/s11483-019-09582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09582-2

Keywords

Navigation