Skip to main content
Log in

Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 09 July 2019

This article has been updated

Abstract

The structural and electrochemical performance of Cu-doped, Li[Ni1/3−xCo1/3 Mn1/3Cux]O2 (x = 0–0.1) cathode materials obtained by means of the sol-–gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g−1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g−1, 159.5 mAh g−1, and 119.4 mAh g−1, the discharge capacity after 50 cycles is 160.8 mAh g−1, 143.4 mAh g−1, and 90.1 mAh g−1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 09 July 2019

    In the original article, Fengzhang Ren���s and Jingjing Ma���s first names are spelled wrong. They are correct as shown here.

  • 09 July 2019

    In the original article, Fengzhang Ren���s and Jingjing Ma���s first names are spelled wrong. They are correct as shown here.

  • 09 July 2019

    In the original article, Fengzhang Ren���s and Jingjing Ma���s first names are spelled wrong. They are correct as shown here.

  • 09 July 2019

    In the original article, Fengzhang Ren���s and Jingjing Ma���s first names are spelled wrong. They are correct as shown here.

References

  1. N. Javad and F. Yosef, Environ. Prog. Sustain. (2017). https://doi.org/10.1002/ep.12535.

    Google Scholar 

  2. D.R. Cooper and T.G. Gutowski, J. Ind. Ecol. 21, 38 (2017).

    Article  Google Scholar 

  3. L. Joungphil and J.P. Moon, Adv. Energy Mater. 7, 1602279 (2017).

    Article  Google Scholar 

  4. Y.R. Wang and H.S. Zhou, Energy Environ. Sci. 9, 2267 (2016).

    Article  Google Scholar 

  5. C. Avila, K. Cedano, and M. Martinez, Int. J. Environ. Sustain. 13, 1 (2017).

    Article  Google Scholar 

  6. H.R. Yao, Y. You, Y.X. Yin, L.J. Wan, and Y.G. Guo, Phys. Chem. Chem. Phys. 18, 9326 (2016).

    Article  Google Scholar 

  7. R.I. Eglitis and G. Borstel, Phys. Status Solidi A 202, R13 (2005).

    Article  Google Scholar 

  8. R.I. Eglitis, Phys. Scr. 90, 094012 (2015).

    Article  Google Scholar 

  9. B.C. Ong, S.K. Kamarudin, and S. Basri, Int. J. Hydrogen Energy 42, 10142 (2017).

    Article  Google Scholar 

  10. P. Grzegorz, A. Marongiu, J. Drillkens, P. Sinhuber, and D.U. Sauer, J. Power Sources 7, 365 (2015).

    Google Scholar 

  11. E.E. Fergab, D.G. Billingcd, and A.M. Venteref, Solid State Sci. 64, 13 (2017).

    Article  Google Scholar 

  12. F. Schipper, E.M. Erickson, C. Erk, J.Y. Shin, F.F. Chesneau, and D. Aurbach, J. Electrochem. Soc. 164, A6220 (2017).

    Article  Google Scholar 

  13. M. Sean, B. Arman, and W. David, J. Appl. Electrochem. 47, 167 (2017).

    Article  Google Scholar 

  14. G.E. Blomgren, J. Electrochem. Soc. 164, A5019 (2017).

    Article  Google Scholar 

  15. T. Horita and J. Shimazaki, Electr. Eng. Jpn. 98, 68 (2017).

    Article  Google Scholar 

  16. W.H. Zhang and K.P. Wang, Adv. Mater. Res. 1056, 3 (2014).

    Article  Google Scholar 

  17. A. Mauger and C. Julien, Ionics 20, 751 (2014).

    Article  Google Scholar 

  18. M.Y. Maximov, A.A. Popovich, and A.M. Rumyantsev, Adv. Mater. Res. 1120–1121, 730 (2015).

    Article  Google Scholar 

  19. P.J. Kumar, K.J. Babu, and O.M. Hussain, Mater. Chem. Phys. 143, 536 (2014).

    Article  Google Scholar 

  20. W. Wu and F.M. Jiang, Chin. Sci. Bull. 58, 4692 (2013).

    Article  Google Scholar 

  21. L. Riekehr, J.L. Liu, B. Schwarz, F. Sigel, I. Kerkamm, Y.Y. Xia, and H. Ehrenberg, J. Power Sources 325, 391 (2016).

    Article  Google Scholar 

  22. S. Liu, L. Xiong, and C. He, J. Power Sources 261, 285 (2016).

    Article  Google Scholar 

  23. J.Q. Gong, Q.S. Wang, and J.H. Sun, Thermochim. Acta 655, 176 (2017).

    Article  Google Scholar 

  24. Z.D. Huang, X.M. Liu, S.W. Oh, B. Zhang, P.C. Ma, and J.K. Kim, J. Mater. Chem. 21, 10777 (2011).

    Article  Google Scholar 

  25. L. Yang and G.X. Xi, J. Electron. Mater. 45, 301 (2016).

    Article  Google Scholar 

  26. L. Yang, G.X. Xi, and Y.B. Xi, Ceram. Int. 41, 11498 (2015).

    Article  Google Scholar 

  27. Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi, and T. Ohzuku, J. Electrochem. Soc. 151, A1545 (2004).

    Article  Google Scholar 

  28. L. Yao, H. Yao, G. Xi, and Y. Feng, RSC Adv. 6, 17947 (2016).

  29. W.B. Hua, J.B. Zhang, Z. Zheng, W.Y. Liu, X.H. Peng, X.D. Guo, B.H. Zhong, Y.J. Wang, and X.L. Wang, Dalton Trans. 43, 14824 (2014).

    Article  Google Scholar 

  30. N. Murali, S.J. Margarette, and V. Veeraiah, Results Phys. 7, 1379 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support obtained from the Natural Science Foundation of China (Grant No. 51304064) and (Grant No. 51502318), China postdoctoral Science Foundation (2017M622341), 2016 high-level talent research project of Henan Institute of Science and Technology (304010617001), Henan postdoctoral science foundation and funding (103020217004/001) for postdoctoral research projects of Henan Institute of Science and Technology. The authors thanked Zhaopei Zhang and Xinsheng Wang for their contribution in the process of sample detection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhagn Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ren, F., Feng, Q. et al. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials. J. Electron. Mater. 47, 3996–4002 (2018). https://doi.org/10.1007/s11664-018-6284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6284-8

Keywords

Navigation