Skip to main content
Log in

Mössbauer Studies of LixFe1/3Mn1/3Ni1/3PO4 Cathode Materials

  • 5th International Conference of Asian Union of Magnetics Societies
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the crystallographic and magnetic properties of LixFe1/3Mn1/3Ni1/3 PO4 (x = 0, 1) using x-ray diffraction (XRD), a vibrating sample magne- tometer (VSM), and Mössbauer spectroscopy. XRD analysis confirmed that the samples have an orthorhombic structure with space group Pnma. From the VSM measurements the samples exhibited an antiferromagnetic behavior with a Curie–Weiss temperature θ = − 162 K for x = 1, and θ = − 303 K for x = 0. The Néel temperature (TN) and spin reorientation temperature (TS) were determined to be 40 K and 10 K for x = 1, and 66 K and 25 K for x = 0. The hyperfine field (Hhf) of LiFe1/3Mn1/3Ni1/3PO4 had smaller values than that of Fe1/3Mn1/3Ni1/3PO4 due to the magnitude of the nearest-neighbor superexchange interaction. Isomer shift (δ) values indicate that the charge states of LiFe1/3Mn1/3Ni1/3PO4 are ferrous (Fe2+), and that of Fe1/3Mn1/3Ni1/3PO4 are ferric (Fe3+). The larger values of the electric quadrupole splitting (δEQ) for the Fe2+ phase compared to the Fe3+ phased originated from the different lattice and valence electron contributions due to the crystalline field and valence transition. Debye temperatures (θD) of 338 ± 5 K (x = 1), and 370 ± 5 K (x = 0) were obtained for the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Liu, G. Chen, B. Du, Y. Cui, X. Ke, J. Liu, Z. Guo, Z. Shi, H. Zhang, and S. Chou, Electrochim. Acta 255, 205 (2017).

    Article  Google Scholar 

  2. R. Kashi, M. Khosravi, and M. Mollazadeh, Mater. Chem. Phys. 203, 319 (2018).

    Article  Google Scholar 

  3. A. Örnek, Chem. Eng. J. 331, 501 (2018).

    Article  Google Scholar 

  4. J.W. Fergus, J. Power Sources 195, 939 (2010).

    Article  Google Scholar 

  5. Y.G. Guo, J.S. Hu, and L.J. Wan, Adv. Mater. 20, 2878 (2008).

    Article  Google Scholar 

  6. R. Hanafusa, Y. Oka, and T. Nakamura, J. Electrochem. Soc. 162, A3045 (2015).

    Article  Google Scholar 

  7. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, and J.B. Goodenough, J. Electrochem. Soc. 144, 1609 (1997).

    Article  Google Scholar 

  8. L. Bao, G. Xu, X.L. Sun, H. Zeng, R.Y. Zhao, X. Yang, G. Shen, G.R. Han, and S.X. Zhou, J. Alloys Compd. 708, 685 (2017).

    Article  Google Scholar 

  9. C. Jin, X.D. Zhang, W. He, Y. Wang, H.M. Li, Z. Wang, and Z.Y. Bi, RSC Adv. 4, 15332 (2014).

    Article  Google Scholar 

  10. S.M. Rommel, N. Schall, C. Brünig, and R. Weihrich, Monatsh. Chem. 145, 385 (2014).

    Article  Google Scholar 

  11. N. Priyadharsini, P. Rupa Kasturi, A. Shanmugavani, S. Surendran, S. Shanmugapriya, and R. Kalai Selvan, J. Phys. Chem. Solids 119, 183 (2018).

    Article  Google Scholar 

  12. C. Hu, B. Wang, H. Yi, J. Zhang, Y. Hu, and J. Li, Int. J. Electrochem. Sci. 13, 5824 (2018).

    Article  Google Scholar 

  13. D.D. Lecce, T. Hu, and J. Hassoun, J. Alloys Compd. 693, 730 (2017).

    Article  Google Scholar 

  14. J. Moskon, M. Pivko, I. Jerman, E. Tchernychova, N. Zabukovec Logar, M. Zorko, V.S. Selih, R. Dominko, and M. Gaberscek, J. Power Sources 303, 97 (2016).

    Article  Google Scholar 

  15. M. Minakshi, P. Singh, D. Appadoo, and D.E. Martin, Electrochim. Acta 56, 4356 (2011).

    Article  Google Scholar 

  16. M.K. Devaraju, Q.D. Truong, H. Hyodo, Y. Sasaki, and I. Honma, Sci. Rep. 5, 11041 (2015).

    Article  Google Scholar 

  17. H. Yuan, X.Y. Wang, Q. Wu, H.B. Shu, and X.K. Yang, J. Alloys Compd. 675, 187 (2016).

    Article  Google Scholar 

  18. H. Choi, H.J. Kim, I.-B. Shim, I.K. Lee, and C.S. Kim, Mater. Res. Bull. 93, 361 (2017).

    Article  Google Scholar 

  19. T.W. Sinor, J.D. Standifird, F. Davanloo, K.N. Taylor, C. Hong, J.J. Carroll, and C.B. Collins, Appl. Phys. Lett. 64, 1221 (1994).

    Article  Google Scholar 

  20. E.A. Zvereva, O.A. Savelieva, Y.D. Titov, M.A. Evstigneeva, V.B. Nalbandyan, C.N. Kao, J.-Y. Lin, I.A. Presniakov, A.V. Sobolev, S.A. Ibragimov, M. Abdel-Hafiez, Y. Krupskaya, C. Jähne, G. Tan, R. Klingeler, B. Büchner, and A.N. Vasiliev, Dalton Trans. 42, 1550 (2013).

    Article  Google Scholar 

  21. W. Kim, C.H. Rhee, H.J. Kim, S.J. Moon, and C.S. Kim, Appl. Phys. Lett. 96, 242505 (2010).

    Article  Google Scholar 

  22. C.S. Kim, I.B. Shim, M.Y. Ha, H. Choi, and J.C. Sur, J. Korean Phys. Soc. 23, 166 (1990).

    Google Scholar 

  23. H.N. Ok and Y.K. Kim, Phys. Rev. B 36, 5120 (1987).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea (NRF) with a Grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2017R1A2B2012241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Barng, S. & Kim, C.S. Mössbauer Studies of LixFe1/3Mn1/3Ni1/3PO4 Cathode Materials. J. Electron. Mater. 48, 1335–1341 (2019). https://doi.org/10.1007/s11664-018-6660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6660-4

Keywords

Navigation