Skip to main content
Log in

Extremely Low-Loss Broadband Thermal Infrared Absorber Based on Tungsten Metamaterial

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An extremely low-loss polarization-insensitive broadband absorber in the thermal infrared region, based on tungsten metamaterial, is proposed. The absorber exhibits almost perfect absorption of 99%, with a broad absorption bandwidth ranging from 56 THz to 117 THz. The broad absorption is attributed to the large effective impedance adaptation of the tungsten metamaterial over a wide angle range in both the transverse electrical (0° to 75°) and transverse magnetic (0° to 80°) field polarizations. Based on these extraordinary electromagnetic properties, the proposed system can achieve excellent performance, with a figure of merit of 2.15 × 106, higher than previously reported values for similar metamaterial absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer: New York, 2010).

    Book  Google Scholar 

  2. H. Zhang, X.-Y. Cao, J. Gao, H.-H. Yang, and Q. Yang, Progr. Electromag. Res. Lett. 44, 35 (2014).

    Article  Google Scholar 

  3. H. Wang, P.V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, Sol. Energy Mater. Sol. Cells 137, 235 (2015).

    Article  Google Scholar 

  4. K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, and P.U. Jepsen, Opt. Express 20, 155520 (2012).

    Google Scholar 

  5. F.Y. Meng, Q. Wu, D. Erni, K. Wu, and J.C. Lee, IEEE. Trans. Microw. Theory Tech. 60, 3013 (2012).

    Article  Google Scholar 

  6. Y. Cheng, X.S. Mao, C. Wu, L. Wu, and R.Z. Gong, Opt. Mater. 53, 195 (2016).

    Article  Google Scholar 

  7. S.H. Han and B.J. Lee, Opt. Express 24, 250239 (2016).

    Google Scholar 

  8. Q. Du, Z. Zeng, D. Xiang, T. Lv, G. Zhang, and H. Yang, J. Mod. Opt. 61, 621 (2014).

    Article  Google Scholar 

  9. S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, Appl. Phys. A 118, 207 (2015).

    Article  Google Scholar 

  10. R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, Appl. Phys. Lett. 105, 181102 (2014).

    Article  Google Scholar 

  11. F. Bendelala, A. Cheknane, and H.S. Hilal, Opt. Quant. Electron. 50, 10 (2018).

    Article  Google Scholar 

  12. Y. Peng, X.F. Zang, Y.M. Zhu, C. Shi, L. Chen, B. Cai, and S.L. Zhuang, Opt. Express 23, 226580 (2015).

    Google Scholar 

  13. R. Gao, X. Zongcheng, C. Ding, W. Liang, and J. Yao, Opt. Commun. 356, 400 (2015).

    Article  Google Scholar 

  14. K. Inki, S. Sunae, S.R. Ahsan, Q.M. Muhammad, and R. Junsuk, Nanophotonics 7, 11 (2018).

    Google Scholar 

  15. J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, IEEE Photon. Technol. Lett. 26, 949 (2014).

    Article  Google Scholar 

  16. Q. Feng, M. Pu, C. Hu, and X. Luo, Opt. Lett. 37, 2122 (2012).

    Google Scholar 

  17. J.F. Chen, Z. Hu, G. Wang, X. Huang, S. Wang, X. Hu, and M. Liu, IEEE Trans. Anten. Propag 63, 4367 (2015).

    Article  Google Scholar 

  18. J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, J. Electron. Mater. 44, 4269 (2015).

    Article  Google Scholar 

  19. Y. She, Y. Pang, J. Wang, H. Ma, Z. Pei, and Q. Shaobo, Appl. Phys. 48, 445008 (2015).

    Google Scholar 

  20. S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, Opt. Express 23, 29222 (2015).

    Article  Google Scholar 

  21. T. Sato, and T. Suzuki. 41st International Conference on Infrared, Millimeter, and Terahertz Waves, W4D.1. Copenhagen, Denmark, Sept. 25–30 (2016). IEEE Explore, 01 December (2016), INSPEC Accession Number: 16502870. https://doi.org/10.1109/irmmw-thz.2016.7758919.

  22. Y. Takebayashi, T. Togashi, and T. Suzuki, IEEJ Trans. Sens. Micromach. 135, 476 (2015). https://doi.org/10.1541/ieejsmas.135.476.

    Article  Google Scholar 

  23. T. Dragan, O. Marko, J. Olga, and J. Zoran, Phys. Scr. T162, 014048 (2015).

    Google Scholar 

  24. I. Koki and S. Takehito, J. Infrared Millim. Terahz. Waves. 38, 1130 (2017).

    Article  Google Scholar 

  25. E. Episkopou, S. Papantonis, W.J. Otter, and S. Lucyszyn, IEEE Trans. Terahertz Sci. Technol. 2, 513 (2012).

    Article  Google Scholar 

  26. KhQ Le, J. Bai, Q.M. Ngo, and P.-Y. Chen, J. Electron. Mater. 46, 668 (2016).

    Article  Google Scholar 

  27. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr, and C.A. Ward, Appl. Opt. 22, 1099 (1983).

    Article  Google Scholar 

  28. S.R. Ahsan, Q.M. Muhammad, J. Heongyeong, K. Inki, and R. Junsuk, Sci. Rep. 8, 2443 (2018).

    Article  Google Scholar 

  29. Y.P. Lee, J.Y. Rhee, Y.J. Yoo, and K.W. Kim, Metamaterials for Perfect Absorption (New York: Springer, 2016).

    Book  Google Scholar 

  30. K. Diest, Numerical Methods for Metamaterial Design (New York: Springer, 2013).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Cheknane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendelala, F., Cheknane, A., Hilal, H.S. et al. Extremely Low-Loss Broadband Thermal Infrared Absorber Based on Tungsten Metamaterial. J. Electron. Mater. 48, 3304–3310 (2019). https://doi.org/10.1007/s11664-019-07090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07090-0

Keywords

Navigation