Skip to main content
Log in

Cu(Zn,Sn)(S,Se)2 Solar Cells with a Nanocomposite Window Layer Produced by Totally Nonvacuum Methods

  • Progress and Challenges for Emerging Integrated Energy Modules
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The authors report the optical and electrical properties of nanocomposite films of Ag-nanowires (Ag-NWs) and indium-tin oxide nanoparticles (ITO-NPs) and their application in window electrodes in solar cells. We found that the electrical and optical properties of Ag-NWs/ITO-NPs nanocomposite films strongly depend on the thickness. Nanocomposite film with 1000 nm thickness was observed to be most suitable for application as window electrodes in Cu(Zn,Sn)(S,Se)2 solar cells. The parameters of the cell using a 1000 nm-thick nanocomposite window electrode are short-circuit current density of 24.2 mA/cm2, open-circuit voltage of 0.32 V, fill factor of 0.44, and conversion efficiency of 3.37%. The results demonstrated an economical pathway for fabricating solar cells without vacuum methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009).

    Article  Google Scholar 

  2. Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, and R. Agrawal, J. Am. Chem. Soc. 132, 17384 (2010).

    Article  Google Scholar 

  3. G. Larramona, S. Bourdais, A. Jacob, C. Chone, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Pere, and G. Dennler, J. Phys. Chem. Lett. 5, 3763 (2014).

    Article  Google Scholar 

  4. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 3, 34 (2013).

    Article  Google Scholar 

  5. S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009).

    Article  Google Scholar 

  6. Y.P. Lin, T.E. Hsieh, Y.C. Chen, and K.P. Huang, Sol. Energy Mater. Sol. Cells 162, 55 (2017).

    Article  Google Scholar 

  7. J.K. Kim, S.H. Park, S.W. Ryu, J.H. Oh, and B.H. Shin, Prog. Photovolt. Res. Appl. 25, 308 (2017).

    Article  Google Scholar 

  8. ThH Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, and S. Ikeda, RSC Adv. 5, 77565 (2015).

    Article  Google Scholar 

  9. X. Lin, J. Kavalakkatt, M.Ch. Lux-Steiner, and A. Ennaoui, Adv. Sci. 2, 1500028 (2015).

    Article  Google Scholar 

  10. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  11. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012).

    Article  Google Scholar 

  12. T.K. Todorov, K.B. Reuter, and D.B. Mitzi, Adv. Energy Mater. 22, 156 (2010).

    Article  Google Scholar 

  13. C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B.A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009).

    Article  Google Scholar 

  14. K. Woo, Y. Kim, and J. Moon, Energy Environ. Sci. 5, 5340 (2012).

    Article  Google Scholar 

  15. W. Yang, H.S. Duan, B. Bob, H. Zhou, B. Lei, C.H. Chung, S.H. Li, W.W. Hou, and Y. Yang, Adv. Mater. 24, 6323 (2012).

    Article  Google Scholar 

  16. K.E. Lee, M.S. Wang, E.J. Kim, and S.H. Hahn, Curr. Appl. Phys. 9, 683 (2009).

    Article  Google Scholar 

  17. Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, Langmuir 29, 13836 (2013).

    Article  Google Scholar 

  18. D.C. Nguyen, S. Ito, and D.V.A. Dung, J. Alloys Compd. 632, 676 (2015).

    Article  Google Scholar 

  19. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, Nat. Mater. 11, 241 (2012).

    Article  Google Scholar 

  20. L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4, 2955 (2010).

    Article  Google Scholar 

  21. H. Lu, D. Zhang, X. Ren, J. Liu, and W.C.H. Choy, ACS Nano 8, 10980 (2014).

    Article  Google Scholar 

  22. Joint committee for powder diffraction standards, No.26-0575, Mater. Res. Bull. 9, 645 (1974)

  23. H.W. Lehmann and M. Robbins, J. Appl. Phys. 37, 1389 (1966).

    Article  Google Scholar 

  24. Y. Iwadate, K. Kawamura, K. Igarashi, and J. Mochinaga, J. Phys. Chem. 86, 5205 (1982).

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2017.45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy Cuong Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.H., Pham, A.T., Tran, D.H. et al. Cu(Zn,Sn)(S,Se)2 Solar Cells with a Nanocomposite Window Layer Produced by Totally Nonvacuum Methods. J. Electron. Mater. 48, 5555–5561 (2019). https://doi.org/10.1007/s11664-019-07147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07147-0

Keywords

Navigation