Skip to main content
Log in

Electrical and Photovoltaic Responses of an Au/Coumarin 337/n-Si/Sb-Au Hybrid Organic–Inorganic Solar Cell

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thin films of coumarin 337 (C-337) dye were fabricated on n-type silicon (111) wafer using a high-vacuum thermal evaporation technique. Investigation of their structure using x-ray diffraction analysis and scanning electron microscopy revealed that the pristine C-337 films had sphere-shaped nanostructure. The absorbance, transmittance, and reflectance of the C-337 films were measured spectrophotometrically. Tauc’s method revealed an indirect allowed-type optical transition for these films with an optical band gap of 1.59 eV assisted by phonons of 52 meV. Hybrid organic–inorganic heterojunction solar cells based on C-337 were deposited on n-type single-crystal silicon wafer. Many aspects of the electrical parameters of the Au/C-337/n-Si/Sb-Au heterojunction solar cells were studied under dark condition based on their capacitance–voltage, conductance–voltage, and current–voltage characteristics at different frequencies (100 kHz to 1 MHz). The Nyquist diagram of the solar cell was recorded at various frequencies. Furthermore, the illuminated current–voltage and phototransient characteristics of the cell were also measured and used to evaluate the photovoltaic performance of the device. Under illumination intensity of 90 mW/cm2, the solar cell showed good photovoltaic behavior with short-circuit current, open-circuit voltage, fill factor, and power conversion efficiency of 5.42 mA, 0.55 V, 0.59, and 4.39%, respectively. The photovoltaic and phototransient properties of the device indicate that it could be applied as both a solar cell and a linear dynamic range optoelectronic switching sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.P. Kumavat, P. Sonar, and D.S. Dalal, Renew. Sust. Energy Rev. 78, 1262 (2017).

    Article  Google Scholar 

  2. C.-P. Lee, C.-T. Li, and K.-C. Ho, Mater. Today 20, 267 (2017).

    Article  Google Scholar 

  3. M. Riede, B. Lüssem, K. Leo, and A.Z.M.S. Rahman, Organic Semiconductors: Reference Module in Materials Science and Materials Engineering (Amsterdam: Elsevier, 2018).

    Google Scholar 

  4. F.-Ch. Chen, Organic Semiconductors, Encyclopedia of Modern Optics (Second Edition, 2018), pp. 220–231.

  5. R. Zhou, Z. Yang, J. Xu, and G. Cao, Coord. Chem. Rev. 374, 279 (2018).

    Article  Google Scholar 

  6. P. Cheng and X. Zhan, Chem. Soc. Rev. 45, 2544 (2016).

    Article  Google Scholar 

  7. D.H. Murray, J. Mendez, and S.A. Brown, The Natural Coumarins: Occurrence, Chemistry and Biochemistry (New York: Wiley, 1982).

    Google Scholar 

  8. J.R. Hoult and M. Paya, Gen. Pharmacol. 27, 713 (1996).

    Article  Google Scholar 

  9. A. Beillerot, J.C. Dominguez, G. Kirsch, and D. Bagrel, Bioorg. Med. Chem. Lett. 18, 1102 (2008).

    Article  Google Scholar 

  10. J. Seixas de Melo and P.F. Fernandes, J. Mol. Struct. 565, 69 (2001).

    Article  Google Scholar 

  11. M.M. Makhlouf and H.M. Zeyada, Synth. Metals 211, 1 (2016).

    Article  Google Scholar 

  12. J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, and M. Gratzel, J. Phys. Chem. 100, 9577 (1996).

    Article  Google Scholar 

  13. U.S. Raikar, V.B. Tangod, S.R. Mannopantar, and B.M. Mastiholi, Opt. Commun. 283, 4289 (2010).

    Article  Google Scholar 

  14. S. Kumar, J. Mater. Sci. Eng. 4, 358 (2014).

    Google Scholar 

  15. D. Yang, Y. Liu, D. Shi, and J. Sun, Comput. Theor. Chem. 984, 76 (2012).

    Article  Google Scholar 

  16. D.A. Cheptsov, N.P. Solovjova, T.A. Chibisova, I.I. Voronov, S.M. Dolotov, and I.V. Ivanov, Dyes Pigments 146, 159 (2017).

    Article  Google Scholar 

  17. H. Feng, R. Li, Y. Song, X. Li, and B. Liu, J. Power Sources 345, 59 (2017).

    Article  Google Scholar 

  18. R.O. Ocaya, A. Al-Ghamdi, K. Mensah-Darkwa, R.K. Gupta, W. Farooq, and F. Yakuphanoglu, Synth. Metals 213, 65 (2016).

    Article  Google Scholar 

  19. G. Denis, I. Konstantinos, K. Oksana, E. Marie, C. Emilie, and S. Marc, Molecules 21, 147 (2016).

    Article  Google Scholar 

  20. O. Gullu and A. Turut, Microelectron. Eng. 87, 2482 (2010).

    Article  Google Scholar 

  21. A. Vearey-Roberts and D. Evans, Appl. Phys. Lett. 86, 072105 (2005).

    Article  Google Scholar 

  22. Y.S. Ocak, R.G. Guven, A. Tombak, T. Kilicoglu, K. Guven, and M. Dogru, Philos. Mag. 93, 2172 (2013).

    Article  Google Scholar 

  23. A. Tombak, Y.S. Ocak, S. Asubay, T. Kilicoglu, and F. Ozkahraman, Mater. Sci. Semicond. Proc. 24, 187 (2014).

    Article  Google Scholar 

  24. F.A. Mir, Optik 126, 24 (2015).

    Article  Google Scholar 

  25. S. Tolansky, Multiple-Beam Interference Microscopy of Metals (New York: Academic, 1970).

    Google Scholar 

  26. M.K. Dey, A.K. Satpati, and A.V.R. Reddy, Anal. Methods 6, 5207 (2014).

    Article  Google Scholar 

  27. B.D. Cullity, Elements of X-Ray Diffraction (Reading: Addison-Wesley, 1956).

    Google Scholar 

  28. J. Rodriguez-Carvajal, Satellite Meet. Powder Diffraction of the XV Cong. IUCr, 1990, Vol. 127.

  29. M.M. Makhlouf, Sens. Actuators A Phys. 279, 145 (2018).

    Article  Google Scholar 

  30. S.H. Alotaibi, A.S. Radwan, Y.K. Abdel-Monem, and M.M. Makhlouf, Spectrochim. Acta A Mol. Biomol. Spectrosc. 205, 364 (2018).

    Article  Google Scholar 

  31. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum, 1974).

    Book  Google Scholar 

  32. H.M. Zeyada and M.M. Makhlouf, Opt. Mater. 54, 181 (2016).

    Article  Google Scholar 

  33. J. Bardeen, F.J. Blatt, and L.H. Hall, Photoconductivity Conference (New York: Wiley, 1956), p. 146.

    Google Scholar 

  34. M.M. Makhlouf, A. El-Denglawey, H.M. Zeyada, and M.M. El-Nahass, J. Lumin. 147, 202 (2014).

    Article  Google Scholar 

  35. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  Google Scholar 

  36. A.S. Radwan, M.M. Makhlouf, and E. Abdel-Latif, Dyes Pigments 134, 516 (2016).

    Article  Google Scholar 

  37. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1979).

    Google Scholar 

  38. H.M. Zeyada, A.A. Habashi, M.M. Makhlouf, A.S. Behairy, and M.A. Nasher, Microelectron. Eng. 163, 516 (2016).

    Article  Google Scholar 

  39. B. Beyer, D. Griese, C. Schirrmann, R. Pfeifer, S. Kahmann, O.R. Hild, and K. Leo, Thin Solid Films 536, 206 (2013).

    Article  Google Scholar 

  40. P.K. Vasudev, B.L. Mattes, E. Pietras, and R.H. Bube, Solid-State Electron. 19, 657 (1976).

    Article  Google Scholar 

  41. B. Akkal, Z. Benamara, B. Gruzza, and L. Bideux, Microelectron. J. 30, 673 (1999).

    Article  Google Scholar 

  42. E.H. Nicollian, A. Goetzberger, and A.D. Lopez, Solid-State Electron. 12, 937 (1969).

    Article  Google Scholar 

  43. S. Karatas and A. Turut, Vacuum 74, 45 (2004).

    Article  Google Scholar 

  44. A.M. Nawar and M.M. Makhlouf, J. Alloys Compd. 767, 1271 (2018).

    Article  Google Scholar 

  45. T.M. Nahir, Impedance spectroscopy: theory, experiment, and applications, in: E. Barsoukov (Texas Instruments Inc.) and J. Ross Macdonald, (University of North Carolina, Chapel Hill), Wiley, Hoboken 2005.

  46. A.M. Nawar, H.M. Abd El-Khalek, and M.M. El-Nahass, Org. Opto Electron. 1, 25 (2015).

    Google Scholar 

  47. P. Yadav, K. Pandey, V. Bhatt, M. Kumar, and J. Kim, Renew. Sustain. Energy Rev. 76, 1562 (2017).

    Article  Google Scholar 

  48. D.C. Sinclair, Bol. Soc. Esp. Cerám. Vidrio 34, 55 (1995).

    Google Scholar 

  49. I. Trabelsi, A. Harizi, and M. Kanzari, Thin Solid Films 631, 161 (2017).

    Article  Google Scholar 

  50. B. Tareev, Physics of Dielectric Materials (Moscow: Mir, 1979).

    Google Scholar 

  51. R.P. Pawar and V. Puri, Ceram. Int. 40, 10423 (2014).

    Article  Google Scholar 

  52. K.F. Abd El-Rahman, A.A.A. Darwish, S.I. Qashou, and T.A. Hanafy, J. Electron. Mater. 45, 3460 (2016).

    Article  Google Scholar 

  53. J.H. Ambrus, C.T. Moynihan, and P.B. Macedo, J. Phys. Chem. 76, 3287 (1972).

    Article  Google Scholar 

  54. A.S.A. Khiar, R. Puteh, and A.K. Arof, Phys. B 373, 23 (2006).

    Article  Google Scholar 

  55. A. Tabib, N. Sdiri, H. Elhouichet, and M. Férid, J. Alloys Compd. 622, 687 (2015).

    Article  Google Scholar 

  56. A.A.A. Darwish, M.M. El-Nahass, and A.E. Bekheet, J. Alloys Compd. 586, 142 (2014).

    Article  Google Scholar 

  57. M.M. Makhlouf and H.M. Zeyada, Solid-State Electron. 105, 51 (2015).

    Article  Google Scholar 

  58. M.M. El-Nahass, M.H. Zeyada, M.S. Aziz, and M.M. Makhlouf, Thin Solid Films 492, 290 (2005).

    Article  Google Scholar 

  59. A.A. Al-Ghamdi, A.M. Nawar, F. El-Tantawy, S.J. Yaghmour, and A. Azam, J. Alloys Compd. 622, 243 (2015).

    Article  Google Scholar 

  60. M.M. Makhlouf, M.M. EL-Nahass, and M.H. Zeyada, Mater. Sci. Semicond. Proc. 58, 68 (2017).

    Article  Google Scholar 

  61. H.M. Zeyada, M.M. Makhlouf, M.M. El-Shabaan, and M.H. Zeyada, Microelectron. Eng. 157, 35 (2016).

    Article  Google Scholar 

  62. K.L. Jensen and N.A. Moody, J. Appl. Phys. 102, 074902 (2007).

    Article  Google Scholar 

  63. Z. Çaldiran, Ş. Aydoğan, A. Yesildag, D. Ekinci, S.V. Kurudirek, and A. Türüt, Mater. Sci. Semicond. Process. 34, 58 (2015).

    Article  Google Scholar 

  64. W.G. Osiris, A.A.M. Farag, and I.S. Yahia, Synth. Metals 161, 1079 (2011).

    Article  Google Scholar 

  65. A.M. Saleh, A.K. Hassan, and R.D. Gould, J. Phys. Chem. Solids 64, 1297 (2003).

    Article  Google Scholar 

  66. M.M. Makhlouf, A.S. Radwan, and B. Ghazal, Appl. Surf. Sci. 452, 337 (2018).

    Article  Google Scholar 

  67. M.M. Makhlouf, A.S. Radwan, and M.R.E. Aly, J. Photochem. Photobiol. A 332, 465 (2017).

    Article  Google Scholar 

  68. A.L. Fahrenbrueh and R.H. Bube, Fundamentals of Solar Cells, Photovoltaic Solar Energy Conversion (New York: Academic, 1983).

    Google Scholar 

  69. X. Cai, S. Zeng, X. Li, J. Zhang, S. Lin, A. Lin, and B. Zhang, Effect of light intensity and temperature on the performance of GaN-based p-i-n solar cells, in International Conference on Electrical and Control Engineering (IEEE Xplore, 2011) pp. 1535–1537.

  70. A.S. Riad, Thin Solid Films 370, 253 (2000).

    Article  Google Scholar 

  71. L.E. Brus, J. Chem. Phys. 80, 4403 (1998).

    Article  Google Scholar 

  72. S. Demirezen, and S.A. Yerişkin, Polym. Bull. (2019) 1–23.

  73. R.L. Vekariya, J.V. Vaghasiya, and A. Dhar, Org. electron. 48, 291 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed M. Nawar or M. M. Makhlouf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawar, A.M., Makhlouf, M.M. Electrical and Photovoltaic Responses of an Au/Coumarin 337/n-Si/Sb-Au Hybrid Organic–Inorganic Solar Cell. J. Electron. Mater. 48, 5771–5784 (2019). https://doi.org/10.1007/s11664-019-07359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07359-4

Keywords

Navigation