Skip to main content
Log in

Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Sea salt particles containing NaCl are among the most abundant particulate masses in coastal atmosphere. Reactions involving sea salt particles potentially generate Cl radicals, which are released into coastal atmosphere. Cl radicals play an important role in the nitrogen and O3 cycles, sulfur chemistry and particle formation in the troposphere of the polluted coastal regions. This paper aimed at the heterogeneous reaction between gaseous HNO3 and solid NaCl. The mechanism was investigated by density functional theory (DFT). The results imply that water molecules induce the surface reconstruction, which is essential for the heterogeneous reaction. The surface reconstruction on the defective (710) surface has a barrier of 10.24 kcal∙mol–1 and is endothermic by 9.69 kcal∙mol–1, whereas the reconstruction on the clean (100) surface has a barrier of 18.46 kcal$mol–1 and is endothermic by 12.96 kcal∙mol–1. The surface reconstruction involved in water-adsorbed (710) surface is more energetically favorable. In comparison, water molecules adsorbed on NaCl (100) surface likely undergo water diffusion or desorption. Further, it reveals that the coordination number of the Cl out is reduced after the surface reconstruction, which assists Cl out to accept the proton from HNO3. HCl is released from heterogeneous reactions between gaseous HNO3 and solid NaCl and can react with OH free radicals to produce atomic Cl radicals. The results will offer further insights into the impact of gaseous HNO3 on the air quality of the coastal areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riedel T P, Bertram T H, Crisp T A, Williams E J, Lerner B M, Vlasenko A, Li S M, Gilman J, de Gouw J, Bon D M, Wagner N L, Brown S S, Thornton J A. Nitryl chloride and molecular chlorine in the coastal marine boundary layer. Environmental Science & Technology, 2012, 46(19): 10463–10470

    Article  CAS  Google Scholar 

  2. Chang S, Allen D T. Atmospheric chlorine chemistry in southeast texas: impacts on ozone formation and control. Environmental Science & Technology, 2006, 40(1): 251–262

    Article  CAS  Google Scholar 

  3. Sommariva R, Glasow R. Multiphase halogen chemistry in the tropical Atlantic ocean. Environmental Science & Technology, 2012, 46(19): 10429–10437

    Article  CAS  Google Scholar 

  4. Allan W, Struthers H, Lowe D C. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: global model results compared with southern hemisphere measurements. Journal of Geophysical Research, D, Atmospheres, 2007, 112(D4): D04306

    Article  Google Scholar 

  5. Keene WC, Stutz J, Pszenny A A P, Maben J R, Fischer E V, Smith A M, von Glasow R, Pechtl S, Sive B C, Varner R K. Inorganic chlorine and bromine in coastal New England air during summer. Journal of Geophysical Research, D, Atmospheres, 2007, 112(D10): D10S12

    Article  Google Scholar 

  6. Philip S, Martin R V, van Donkelaar A, Lo J W, Wang Y, Chen D, Zhang L, Kasibhatla P S, Wang S, Zhang Q, Lu Z, Streets D G, Bittman S, Macdonald D J. Global chemical composition of ambient fine particulate matter for exposure assessment. Environmental Science & Technology, 2014, 48(22): 13060–13068

    Article  CAS  Google Scholar 

  7. Gregory R C, Bhupesh A, Sarika K, Alessio D, Youhua T, David S, Qiang Z, Tami C B, Veerabhadran R, Aditsuda J, Pallavi M. Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. Environmental Science & Technology, 2009, 43(15): 5811–5817

    Article  Google Scholar 

  8. Davies J A, Cox R A. Kinetics of the heterogeneous reaction of HNO3 with NaCl: effect of water vapor. Journal of Physical Chemistry A, 1998, 102(39): 7631–7642

    Article  CAS  Google Scholar 

  9. Evans C D, Monteith D T, Fowler D, Cape J N, Brayshaw S. Hydrochloric acid: an overlooked driver of environmental change. Environmental Science & Technology, 2011, 45(5): 1887–1894

    Article  CAS  Google Scholar 

  10. Yao X, Fang M, Chan C K. Experimental study of the sampling artifact of chloride depletion from collected sea salt aerosols. Environmental Science & Technology, 2001, 35(3): 600–605

    Article  CAS  Google Scholar 

  11. Ro C U, Kim H, Oh K Y, Yea S K, Lee C B, Jang M, Van Grieken R. Single-particle characterization of urban aerosol particles collected in three Korean cities using low-Z electron probe X-ray microanalysis. Environmental Science & Technology, 2002, 36(22): 4770–4776

    Article  CAS  Google Scholar 

  12. Hess M, Krieger U K, Marcolli C, Peter T, Lanford W A. Uptake of nitric acid on NaCl single crystals measured by backscattering spectrometry. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2010, 268 (11–12): 2202–2204

    Article  CAS  Google Scholar 

  13. Nishikawa Y, Kannari A. Atmospheric concentration of ammonia, nitrogen dioxide, nitric acid, and sulfur dioxide by passive method within Osaka prefecture and their emission inventory. Water, Air, and Soil Pollution, 2010, 215(1–4): 229–237

    Google Scholar 

  14. Fenter F F, Caloz F, Rossi MJ. Kinetics of nitric acid uptake by salt. Journal of Physical Chemistry, 1994, 98(39): 9801–9810

    Article  CAS  Google Scholar 

  15. Finlayson-Pitts B J, Hemminger J C. Physical chemistry of airborne sea salt particles and their components. Journal of Physical Chemistry A, 2000, 104(49): 11463–11477

    Article  CAS  Google Scholar 

  16. Ro C U, Oh K Y, Kim Y P, Lee C B, Kim K H, Kang C H, Osán J, de Hoog J, Worobiec A, Van Grieken R. Single-particle analysis of aerosols at Cheju Island, Korea, using low-Z electron probe X-ray microanalysis: a direct proof of nitrate formation from sea salts. Environmental Science & Technology, 2001, 35(22): 4487–4494

    Article  CAS  Google Scholar 

  17. Allen H C, Laux J M, Vogt R, Finlayson-Pitts B J, Hemminger J C. Water-induced reorganization of ultrathin nitrate films on NaCl: implications for the tropospheric chemistry of sea salt particles. Journal of Physical Chemistry, 1996, 100(16): 6371–6375

    Article  CAS  Google Scholar 

  18. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517

    Article  CAS  Google Scholar 

  19. Delley B. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

    Article  CAS  Google Scholar 

  20. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  Google Scholar 

  21. Rabuck A D, Scuseria G E. Performance of recently developed kinetic energy density functions for the calculation of hydrogen binding strengths and hydrogen-bonded structures. Theoretical Chemistry Accounts, 2000, 104(6): 439–444

    Article  CAS  Google Scholar 

  22. McNellis E R, Meyer J, Reuter K. Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(20): 205414

    Article  Google Scholar 

  23. Li B, Michaelides A, Scheffler M. Density functional theory study of flat and stepped NaCl(001). Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 075401

    Article  Google Scholar 

  24. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B: Condensed Matter and Materials Physics, 1976, 13(12): 5188–5192

    Article  Google Scholar 

  25. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. A generalized synchronous transit method for transition state location. Computational Materials Science, 2003, 28(2): 250–258

    Article  CAS  Google Scholar 

  26. Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985

    Article  Google Scholar 

  27. Nickels J E, Fineman M A, Wallace W E. X-Ray diffraction studies of sodium chloride-sodium bromide solid solutions. Journal of Physical Chemistry, 1949, 53(5): 625–628

    Article  CAS  Google Scholar 

  28. Yang Y, Meng S, Wang E. Water adsorption on a NaCl (001) surface: adensity functional theory study. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(24): 245409

    Article  Google Scholar 

  29. Bruch L W, Glebov A, Toennies J P, Weiss H. A helium atom scattering study of water adsorption on the NaCl(100) single crystal surface. Journal of Chemical Physics, 1995, 103(12): 5109–5120

    Article  CAS  Google Scholar 

  30. Folsch S, Stock A, Henzler M. Two-dimensional water condensation on the NaCl(100) surface. Surface Science, 1992, 264(1–2): 65–72

    Article  Google Scholar 

  31. Li B, Michaelides A, Scheffler M. How strong is the bond between water and salt? Surface Science, 2008, 602(23): L135–L138

    Article  CAS  Google Scholar 

  32. Ahlswede K J. MSINDO Study of the adsorption of water molecules at defective NaCl(100) surfaces. Surface Science, 1999, 439(1): 86–94

    Article  CAS  Google Scholar 

  33. Verdaguer A, Sacha G M, Luna M, Ogletree D F, Salmeron M. Initial stages of water adsorption on NaCl (100) studied by scanning polarization force microscopy. Journal of Chemical Physics, 2005, 123(12): 124703

    Article  Google Scholar 

  34. Pepa C, Sanfelix A A, George R D, Daniel S. Water adsorption and diffusion on NaCl(100). Journal of Physical Chemistry B, 2006,48 (110): 24559–24564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Zhang, Q. & Wang, W. Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study. Front. Environ. Sci. Eng. 10, 3 (2016). https://doi.org/10.1007/s11783-016-0836-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0836-z

Keywords

Navigation