Photonic Sensors

, Volume 9, Issue 3, pp 268–276 | Cite as

Optically Controlled Extraordinary Terahertz Transmission of Bi2Se3 Film Modulator

  • Junhu Zhou
  • Tong Zhou
  • Dongsheng Yang
  • Zhenyu WangEmail author
  • Zhen Zhang
  • Jie You
  • Zhongjie Xu
  • Xin Zheng
  • Xiang-ai Cheng
Open Access


Standing on the potential for high-speed modulation and switching in the terahertz (THz) regime, all-optical approaches whose response speeds mainly depend on the lifetime of nonequilibrium free carriers have attracted a tremendous attention. Here, we establish a novel bi-direction THz modulation experiment controlled by femtosecond laser for new functional devices. Specifically, time-resolved transmission measurements are conducted on a series of thin layers Bi2Se3 films fabricated straightforwardly on Al2O3 substrates, with the pump fluence range from 25 μJ/cm2 to 200 μJ/cm2 per pulse. After photoexcitation, an ultrafast switching of THz wave with a full recovery time of ~10 ps is observed. For a longer timescale, a photoinduced increase in the transmitted THz amplitude is found in the 8 and 10 quintuple layers (QL) Bi2Se3, which shows a thickness-dependent topological phase transition. Additionally, the broadband modulation effect of the 8 QL Bi2Se3 film is presented at the time delays of 2.2 ps and 12.5 ps which have a maximum modulation depth of 6.4% and 1.3% under the pump fluence of 200 μJ/cm2, respectively. Furthermore, the absorption of α optical phonon at 1.9 THz shows a time-dependent evolution which is consistent with the cooling of lattice temperature.


Ultrafast optics topological insulator ultrafast photonic devices 



This work was partially supported by Opening Foundation of State Key Laboratory of High Performance Computing (Grant Nos. 201601–01, 201601–02, and 201601-03); Scientific Researches Foundation of National University of Defense Technology (Grant No. zk16-03-59); Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology (Grant No. GNJGJS03); Director Fund of State Key Laboratory of Pulsed Power Laser Technology (Grant No. SKL2018ZR05); Opening Foundation of State Key Laboratory of laser and matter interaction (Grant No. SKLLIM1702).

The Opening Foundation of State Key Laboratory of High Performance Computing (Grant Nos. 201601-01, 201601-02, and 201601-03) plays the role of designing the subject and materials growth. The Director Fund of State Key Laboratory of Pulsed Power Laser Technology (Grant No. SKL2018ZR05) and the Opening Foundation of State Key Laboratory of laser and matter interaction (Grant No. SKLLIM1702) play the role of data collection and analysis. The Scientific Researches Foundation of National University of Defense Technology (Grant No. zk16-03-59) and the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology (GNJGJS03) play the role of data interpretation and manuscript writing.


  1. [1]
    Y. Ren, R. Wallis, D. S. Jessop, R. D. Innocenti, A. Klimont, H. E. Beere, et al., “Fast terahertz imaging using a quantum cascade amplifier,” Applied Physics Letters, 2015, 107: 26–33.Google Scholar
  2. [2]
    G. Ducournau, P. Szriftgiser, F. Pavanello, E. Peytavit, M. Zaknoune, D. Bacquet, et al., “THz communications using photonics and electronic devices: the race to data-rate,” Journal of Infrared, Millimeter and Terahertz Waves, 2015, 36(2): 198–220.CrossRefGoogle Scholar
  3. [3]
    M. Theuer, S. S. Harsha, D. Molter, G. Torosyan, and R. Beigang, “Terahertz time-domain spectroscopy of gases, liquids, and solids,” Chemphyschem, 2011, 12(15): 2695–2705.CrossRefGoogle Scholar
  4. [4]
    C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O. Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials,” Metamaterials, 2009, 3(2): 100–112.ADSCrossRefGoogle Scholar
  5. [5]
    M. Wagner, A. S. Mcleod, S. J. Maddox, Z. Fei, M. Liu, R. D. Averitt, et al., “Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy,” Nano Letters, 2015, 14(8): 4529–4534.ADSCrossRefGoogle Scholar
  6. [6]
    H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, et al., “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Optics Letters, 2007, 32(12): 1620–1622.ADSCrossRefGoogle Scholar
  7. [7]
    Q. Li, Z. Tian, X. Q. Zhang, R. J. Singh, L. L. Du, J. Q. Gu, et al., “Active graphene-silicon hybrid diode for terahertz waves,” Nature Communications, 2015, 6: 7082-1‒7082-6.ADSCrossRefGoogle Scholar
  8. [8]
    J. Zhao, Z. J. Xu, Y. Y. Zang, Y. Gong, X. Zheng, K. He, et al., “Thickness-dependent carrier and phonon dynamics of topological insulator Bi2Te3 thin films,” Optics Express, 2017, 25(13): 14635–14643.ADSCrossRefGoogle Scholar
  9. [9]
    M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Physics, 2015, 39(10): 843–846.Google Scholar
  10. [10]
    M. Klintenberg, S. Lebegue, M. I. Katsnelson, and O. Eriksson, “A theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements,” Physical Review B: Condensed Matter, 2010, 81: 085433-1–0854335.ADSCrossRefGoogle Scholar
  11. [11]
    P. P. Di, M. Ortolani, O. Limaj, G. A. Di, V. Giliberti, F. Giorgianni, et al., “Observation of Dirac plasmons in a topological insulator,” Nature Nanotechnology, 2013, 8(8): 556–560.ADSCrossRefGoogle Scholar
  12. [12]
    M. Autore, F. D. Apuzzo, A. D. Gaspare, V. Giliberti, O. Limaj, P. Roy, et al., “Plasmon-phonon interactions in topological insulator microrings,” Advanced Optical Materials, 2015, 3(9): 1257–1263.CrossRefGoogle Scholar
  13. [13]
    L. V. Yashina, J. Sánchezbarriga, M. R. Scholz, A. A. Volykhov, A. P. Sirotina, S. N. Vera, et al., “Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water,” ACS Nano, 2013, 7(6): 5181–5191.Google Scholar
  14. [14]
    Y. Okada and V. Madhavan, “Topological insulators: plasmons at the surface,” Nature Nanotechnology, 2013, 8(8): 541–542.ADSCrossRefGoogle Scholar
  15. [15]
    J. A. Sobota, S. Yang, J. G. Analytis, Y. L. Chen, I. R. Fisher, P. S. Kirchmann, et al., “Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3,” Physical Review Letters, 2012, 108(11): 117403-1‒117403-5.ADSCrossRefGoogle Scholar
  16. [16]
    K. M. F. Shahil, M. Z. Hossain, V. Goyal, and A. A. Balandin, “Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials,” Journal of Applied Physics, 2012, 111(5): 054305-1‒054305–8.ADSCrossRefGoogle Scholar
  17. [17]
    B. C. Park, T. H. Kim, K. I. Sim, B. Kang, J. W. Kim, B. Cho, et al., “Terahertz single conductance quantum and topological phase transitions in topological insulator Bi2Se3 ultrathin films,” Nature Communications, 2015, 6: 6552-1‒6552-8.ADSCrossRefGoogle Scholar
  18. [18]
    R. V. Aguilar, J. Qi, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, M. Brahlek, et al., “Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3,” Applied Physics Letters, 2015, 106(1): 011901-1‒011901-5.ADSCrossRefGoogle Scholar
  19. [19]
    C. X. Liu, H. J. Zhang, B. Yan, X. L. Qi, T. Frauenheim, X. Dai, et al., “Oscillatory crossover from two dimensional to three dimensional topological insulators,” Physical Review B: Condensed Matter, 2009, 81(4): 1–8.Google Scholar
  20. [20]
    J. Linder, “Anomalous finite size effects on surface states in the topological insulator Bi2Se3,” Physical Review B: Condensed Matter, 2009, 80(20): 2665–2668.CrossRefGoogle Scholar
  21. [21]
    Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, et al., “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit,” Nature Physics, 2009, 6(8): 712–712.ADSGoogle Scholar
  22. [22]
    A. Crepaldi, F. Cilento, B. Ressel, C. Cacho, J. C. Johannsen, M. Zacchigna, et al., “Evidence of reduced surface electron-phonon scattering in the conduction band of Bi2Se3 by non-equilibrium ARPES,” Physical Review B: Condensed Matter, 2013, 88(12): 95–103.CrossRefGoogle Scholar
  23. [23]
    M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Advanced Materials, 2017, 29(32): 1605881-1‒1605881-6.CrossRefGoogle Scholar
  24. [24]
    D. S. Yang, T. Jiang, and X. A. Cheng, “Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets,” Optics Express, 2017, 25(14): 16364–16377.ADSCrossRefGoogle Scholar
  25. [25]
    X. K. Liu, Z. Y. Zhang, X. Lin, K. L. Zhang, Z. M. Jin, Z. X. Cheng, et al., “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Optics Express, 2016, 24(23): 26618–26628.ADSCrossRefGoogle Scholar
  26. [26]
    S. Punthawanunt, S. Soysouvanh, K. Luangxaysana, S. Mitatha, M. Yoshida, N. Komine, et al., “THz switching generation using a PANDA ring resonator for high speed computer communication,” in Proceeding of Progress In Electromagnetics Research Symposium Proceedings, KL, Malaysia, 2012, pp. 173–176.Google Scholar
  27. [27]
    Y. H. Wang, D. Hsieh, E. J. Sie, H. Steinberg, D. R. Gardner, Y. S. Lee, et al., “Measurement of intrinsic dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angle-resolved photoemission spectroscopy,” Physical Review Letters, 2012, 109(12): 127401-1‒127401-5.ADSCrossRefGoogle Scholar
  28. [28]
    S. Sim, M. Brahlek, N. Koirala, S. Cha, S. Oh, and H. Choi, “Ultrafast terahertz dynamics of hot Dirac-electron surface scattering in the topological insulator Bi2Se3,” Physical Review B, 2014, 89(16): 165137-1‒165137-8.ADSCrossRefGoogle Scholar
  29. [29]
    S. A. Baig, J. L. Boland, D. A. Damry, and H. H. Tan, “An ultrafast switchable terahertz polarization modulator based on III−V semiconductor nanowires,” Nano Letters, 2017, 17: 2603–2610.ADSCrossRefGoogle Scholar
  30. [30]
    C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, and X. Ling, “Trion-induced negative photoconductivity in monolayer MoS2,” Physical Review Letters, 2014, 113(16): 166801-1‒166801-14.ADSCrossRefGoogle Scholar
  31. [31]
    S. Kar, V. L. Nguyen, D. R. Mohapatra, and Y. H. Lee, “Ultrafast spectral photoresponse of bilayer graphene: optical pump-terahertz probe spectroscopy,” ACS Nano, 2018, 12(2): 1785–1792.Google Scholar
  32. [32]
    G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation,” Nano Letters, 2013, 13(2): 524–530.ADSCrossRefGoogle Scholar
  33. [33]
    S. Kar, Y. M. Su, R. R. Nair, and A. K. Sood, “Probing photo-excited carriers in a few layer MoS2 laminate by time resolved optical pump-terahertz probe spectroscopy,” ACS Nano, 2015, 9(12): 12004–12010.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Junhu Zhou
    • 1
  • Tong Zhou
    • 2
  • Dongsheng Yang
    • 1
  • Zhenyu Wang
    • 2
    • 3
    Email author
  • Zhen Zhang
    • 4
  • Jie You
    • 2
    • 3
  • Zhongjie Xu
    • 1
  • Xin Zheng
    • 2
    • 3
  • Xiang-ai Cheng
    • 1
    • 2
  1. 1.College of Advanced Interdisciplinary StudiesNational University of Defense TechnologyChangshaChina
  2. 2.State Key Laboratory of High Performance ComputingNational University of Defense TechnologyChangshaChina
  3. 3.National Innovation Institute of Defense TechnologyAcademy of Military Sciences PLA ChinaBeijingChina
  4. 4.State Key Laboratory of Laser Interaction with MatterNorthwest Institute of Nuclear TechnologyXi’anChina

Personalised recommendations