Photonic Sensors

, Volume 9, Issue 3, pp 230–238 | Cite as

Broadband Acoustic Vibration Sensor Based on Cladding-Mode Resonance of Double-Cladding Fiber

  • Guanghui Sui
  • Huanhuan Liu
  • Fufei PangEmail author
  • Jiajing Cheng
  • Tingyun Wang
Open Access
Regular 2018ACP Special Section


We have proposed and demonstrated a double-cladding fiber (DCF) with cladding-mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ~80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring.


Double-cladding fiber acoustic vibration sensor coaxial coupler 



This project was funded by the National Key Research and Development Program of China (Grant No. 2016YFF0100600) and the National Natural Science Foundation of China (Grant Nos. 61735009 and 61635006).


  1. [1]
    Y. Ishihara, M. Kanao, M. Yamamoto, T. Shigeru, M. Takeshi, and M. Takahiko, “Infrasound observations at syowa station, east antarctica: Implications for detecting the surface environmental variations in the polar regions,” Geoscience Frontiers, 2015, 6(2): 285–296.CrossRefGoogle Scholar
  2. [2]
    V. Arora, Y. H. Wijnant, and A. de Boer, “Acoustic-based damage detection method,” Applied Acoustics, 2014, 80: 23–27.CrossRefGoogle Scholar
  3. [3]
    R. Mazlan, J. Kei, L. Hickson, J. Gavranich, and R. Linning, “Test-retest reproducibility of the 1000Hz tympanometry test in newborn and six-week-old healthy infants,” International Journal of Audiology, 2010, 49(11): 815–822.CrossRefGoogle Scholar
  4. [4]
    G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art,” IEEE Sensors Journal, 2008, 8(7): 1184–1193.ADSGoogle Scholar
  5. [5]
    J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiber-optic acoustic sensors,” Photonic Sensors, 2014, 4(3): 198–208.ADSCrossRefGoogle Scholar
  6. [6]
    L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Lfuniu, et al., “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sensors Journal, 2016, 16(9): 3054–3058.ADSCrossRefGoogle Scholar
  7. [7]
    C. Sun, “Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration,” Optics Letters, 2003, 28(12): 1001–1003.ADSCrossRefGoogle Scholar
  8. [8]
    T. Zhang, F. Pang, H. Liu, J. Cheng, L. Lv, X. Zhang, et al., “A fiber-optic sensor for acoustic emission detection in a high voltage cable system,” Sensors, 2016, 16(12): 2026–2036.CrossRefGoogle Scholar
  9. [9]
    Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Optics Communications, 2008, 281(6): 1538–1544.ADSCrossRefGoogle Scholar
  10. [10]
    J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, “Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1995, 42(5): 820–824.CrossRefGoogle Scholar
  11. [11]
    K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, and H. Horinaka, “Balanced polarization maintaining fiber Sagnac interferometer vibration sensor,” Optics Express, 2011, 19(22): 21467–21474.ADSCrossRefGoogle Scholar
  12. [12]
    L. Wang, N. Fang, C. Wu, H. Qin, and Z. Huang, “A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-Based DOP Tunable fiber ring laser,” Sensors, 2014, 14(5): 8398–8422.CrossRefGoogle Scholar
  13. [13]
    S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, et al., “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors, 2009, 9(6): 4446–4454.CrossRefGoogle Scholar
  14. [14]
    N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics, 2000, 38: 581–585.CrossRefGoogle Scholar
  15. [15]
    A. V. Harisha, B. Varghesea, B. Raob, K. Balasubramaniamc, and B. Srinivasan, “Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings,” Ultrasonics, 2015, 22: 103–108.CrossRefGoogle Scholar
  16. [16]
    S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Intensity demodulation-based acoustic sensor using dual fiber Bragg gratings and a titanium film,” Journal of Modern Optics, 2014, 61(12): 1033–1038.ADSCrossRefGoogle Scholar
  17. [17]
    J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensors and Actuators A: Physical, 2012, 173(1): 97–101.CrossRefGoogle Scholar
  18. [18]
    D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Applied Physics Letters, 2016, 108(4): 041912.ADSCrossRefGoogle Scholar
  19. [19]
    A. Sun, Z. Wu, C. Wan, and C. Yang, “All-fiber optic acoustic sensor based on multimode-single mode-multimode structure,” Optik, 2012, 123(13): 1138–1139.ADSCrossRefGoogle Scholar
  20. [20]
    C. S. Fernandes, M. T. M. R. Giraldi, M. J. Souza, J. C. W. A. Costa, C. Golveia, P. Jorge, et al., “Curvature and vibration sensing based on core diameter mismatch structures,” IEEE Transactions on Instrumentation and Measurement, 2016, 65(9): 2120–2128.CrossRefGoogle Scholar
  21. [21]
    Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, et al., “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics Journal, 2015, 7(2): 1–7.CrossRefGoogle Scholar
  22. [22]
    Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, V. Bhardwaj, et al., “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Optics Express, 2013, 21(3): 3031–3042.ADSCrossRefGoogle Scholar
  23. [23]
    Y. Li, X. Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Applied Optics, 2011, 50: 1873–1878.ADSCrossRefGoogle Scholar
  24. [24]
    I. R. Matłas, M. L. Amo, F. Montero, C. F. Valdivielso, F. J. Arregui, and C. Bariin, “Low-cost optical amplitude modulator based on a tapered single-mode optical fiber,” Applied Optics, 2001, 42(2): 228–234.ADSGoogle Scholar
  25. [25]
    W. Ni, P. Lu, X. Fu, S. Wang, Y. Sun, D. Liu, et al., “Highly sensitive optical fiber curvature and acoustic sensor based on thin core ultralong period fiber grating,” IEEE Photonics Journal, 2017, 9(2): 43–45.Google Scholar
  26. [26]
    F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, et al., “Special optical fiber for temperature sensing based on cladding-mode resonance,” Optics Express, 2008, 16(17): 12967–16972.ADSCrossRefGoogle Scholar
  27. [27]
    J. Zhang, F. Pang, H. Guo, Z. Chen, and T. Wang, “A strain sensor based on cladding mode resonance of double-cladding fiber,” Proceedings of SPIE − The International Society for Optical Engineering, 2010, 7853: 78533U.ADSGoogle Scholar
  28. [28]
    S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical fiber acoustic sensor based on nonstandard fused coupler and aluminum foil,” IEEE Sensors Journal, 2014, 14(7): 2293–2298.ADSGoogle Scholar
  29. [29]
    B. Xu, Y. Li, M. Sun, Z. Zhang, X. Dong, Z. Zhang, et al., “Acoustic vibration sensor based on nonadiabatic tapered fibers,” Optics Letters, 2012, 37(22): 4768–4770.ADSCrossRefGoogle Scholar
  30. [30]
    P. Lu, Y. Xu, F. Baset, X. Bao, and R. Bhardwaj, “In-line fiber microcantilever vibration sensor,” Applied Physics Letters, 2013, 103(21): 211113-1–211113-5.ADSCrossRefGoogle Scholar
  31. [31]
    J. Villatoro, E. Antonio-lopez, J. Zubia, A. Schulzgen, and R. Amezcua-Correa, “Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing,” Optics Express, 2017, 25(21): 25734–25740.ADSCrossRefGoogle Scholar
  32. [32]
    Y. Li, X, Wang, and X. Bao, “Sensitive acoustic vibration sensor using single-mode fiber tapers,” Applied Optics, 2011, 50(13): 1873–1878.ADSCrossRefGoogle Scholar
  33. [33]
    T. Zhang, F. Pang, H. Liu, J. Cheng, L. Lv, X. Zhang, et al., “A fiber-optic sensor for acoustic emission detection in a high voltage cable system,” Sensors, 2016, 16(12): 2026–2036.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Guanghui Sui
    • 1
  • Huanhuan Liu
    • 2
  • Fufei Pang
    • 2
    Email author
  • Jiajing Cheng
    • 2
  • Tingyun Wang
    • 2
  1. 1.Changcheng Institute of Metrology & MeasurementBeijingChina
  2. 2.Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data ScienceShanghai UniversityShanghaiChina

Personalised recommendations