Skip to main content
Log in

Accuracy Control of Fiber Cable’s Outer Diameter with Algorithms of Filtration, Prediction and PID Controller

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The qualification ratio of fiber cables is highly related to the accuracy and evenness of its outer diameter. Due to external influences such as fluctuations of current and voltage, there is a high probability that the outer diameter of a fiber cable is out of the expected interval, which can significantly decrease its quality and qualification ratio. To improve the accuracy and evenness of cable’s outer diameter, several algorithms are integrated into our approach. An online anomaly detection and mitigation algorithm is used to eliminate anomaly outer diameters collected by the laser outer diameter scanner. To further enhance the accuracy of outer diameters, the back-propagated neural network is used to train a prediction model and predict subsequent outer diameters one step ahead. Based on the deviation between the predicted outer diameter and the expected outer diameter, a proportional–integral–differential (PID) controller is applied to tune the screw rotation speed of plastic extruder to improve the accuracy of fiber cable’s outer diameter as well as the qualification ratio. To improve the applicability of the PID controller for various fiber cables, a nonlinear regression algorithm is used to optimize the coefficients of the PID. Experimental results show that our approach can significantly improve the accuracy and evenness of fiber cable’s outer diameter and can be applied to circular fiber cable production lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Angilella, V.; Chardy, M.; Ben-Ameur, W.: Fiber cable network design with operations administration & maintenance constraints. In: International Conference on Operations Research and Enterprise Systems (2017)

  2. Pinto, J.T.; Amaral, K.J.; Hartard, S.; Janissek, P.R.; Helling, K.: Reducing the environmental impacts of vitreous optical fiber production—A Life Cycle Impact Assessment. J. Clean. Prod. 165, 762–776 (2017)

    Article  Google Scholar 

  3. Fu, X.; Zhang, Y.; Tao, K.; Li, S.: The outer diameter detection and experiment of the circular forging using laser scanner. Opt. Int. J. Light Electron Opt. 128, 281–291 (2017)

    Article  Google Scholar 

  4. Okamoto, A.; Wasa, Y.; Kagawa, Y.: Development of shape measurement system for hot large forgings. Res. Dev. Kobe 57(3), 29 (2007)

    Google Scholar 

  5. Raju, G.; Sharma, M.L.; Meena, M.L.: Recent methods for optimization of plastic extrusion process: a literature review. Int. J. Adv. Mech. Eng. 4, 583–588 (2014)

    Google Scholar 

  6. Narasimha, M.; Rejikumar, R.: Plastic pipe defects minimization. Int. J. Innov. Res. Dev. 2(5), 1337–1351 (2013)

    Google Scholar 

  7. Huang, H.X.; Liao, C.M.: Prediction of parison swell in plastics extrusion blow molding using a neural network method. Polym. Test. 21(7), 745–749 (2002)

    Article  Google Scholar 

  8. Oke, S.A.; Johnson, A.O.; Charles-Owaba, O.E.; Oyawale, F.A.; Popoola, I.O.: A neuro-fuzzy linguistic approach in optimizing the flow rate of a plastic extruder process. Int. J. Sci. Technol. 1(2), 115–123 (2006)

    Google Scholar 

  9. Mu, Y.; Zhao, G.; Wu, X.: Optimization approach for processing design in the extrusion process of plastic profile with metal insert. e-Polymers 12(1), 1–14 (2012)

    Article  Google Scholar 

  10. Mamalis, A.G.; Vortselas, A.K.; Kouzilos, G.: Tube extrusion of polymeric materials: optimization of the processing parameters. J. Appl. Polym. Sci. 126(1), 186–193 (2012)

    Article  Google Scholar 

  11. Bayindir, R.; Cetinceviz, Y.: A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants: an experimental setup. ISA Trans. 50(2), 321–328 (2011)

    Article  Google Scholar 

  12. Honda, A.; Okano, F.; Ooshima, K.; Akino, N.; Kikuchi, K.; Tanai, Y.; Ikeda, Y.: Application of PLC to dynamic control system for liquid He cryogenic pumping facility on JT-60U NBI system. Fusion Eng. Des. 83(2–3), 276–279 (2008)

    Article  Google Scholar 

  13. Valencia-Palomo, G.; Rossiter, J.A.: Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information. ISA Trans. 50(1), 92–100 (2011)

    Article  Google Scholar 

  14. Yao, Y.P.; Shi, Y.; Fei, J.Y.: Application of configuration technology in traffic light control system based on plc. In: Applied Mechanics and Materials, vol. 151. Trans Tech Publications, pp. 510–513 (2012)

  15. Na, Qiu; Yingying, Li: Configuration software-based monitoring system of the boiler. Boiler Manuf. 1, 44–47 (2012)

    Google Scholar 

  16. Da-Wei, L.I.; Duan, D.W.: A configuration software-based supervisory system. Tech. Autom. Appl. 28, 93–95 (2009)

    Google Scholar 

  17. Teng, Y.; Dai, S.; Wei, Z.; Zhang, Y.; Xue, T.; Li, Y.; Lin, L.: Controlling for outer-diameter of superconducting cable for PF Cable-In-Conduit Conductor of ITER. Cryogenics 52(12), 760–763 (2012)

    Article  Google Scholar 

  18. Zou, J.; Xu, J.; Chen, W. et al.: Integrated automation system of dressing based on PLC and KingView. In: International Conference on Biomedical Engineering and Informatics. IEEE, 2010, pp. 2795–2798

  19. Hodge, V.; Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  MATH  Google Scholar 

  20. Chandola, V.; Banerjee, A.; Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  21. Hill, D.J.; Minsker, B.S.; Amir, E.: Real-time Bayesian anomaly detection in streaming environmental data. Water Resour. Res. 45(4), 1–16 (2009)

    Article  Google Scholar 

  22. Krishnamachari, B.; Iyengar, S.: Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Trans. Comput. 53(3), 241–250 (2004)

    Article  Google Scholar 

  23. Agrawal, S.; Agrawal, J.: Survey on anomaly detection using data mining techniques. Proc. Comput. Sci. 60, 708–713 (2015)

    Article  Google Scholar 

  24. Hill, D.J.; Minsker, B.S.: Anomaly detection in streaming environmental sensor data: a data-driven modeling approach. Environ. Modell. Softw. 25(9), 1014–1022 (2010)

    Article  Google Scholar 

  25. Nassiopoulos, A.: An embedded PID temperature control scheme with application in a medical microwave radiometer. J. Eng. Sci. Technol. Rev. 9(4), 56–60 (2016)

    Article  Google Scholar 

  26. Bhatt, R.; Parmar, G.; Gupta, R.; Sikander, A.: Application of stochastic fractal search in approximation and control of LTI systems. Microsyst. Technol. 25, 105–114 (2019)

    Article  Google Scholar 

  27. Goyal, R.; Parmar, G.; Sikander, A.: A new approach for simplification and control of linear time invariant systems. Microsyst. Technol. 25(2), 599–607 (2019)

    Article  Google Scholar 

  28. Fan, L.; Joo, E. M.: Design for auto-tuning PID controller based on genetic algorithms. In: 4th IEEE Conference on Industrial Electronics and Applications, 2009. ICIEA 2009, pp. 1924–1928. IEEE (2009)

  29. Hanwate, S.D.; Hote, Y.V.: Optimal PID design for Load frequency control using QRAWCP approach. IFAC-PapersOnLine 51(4), 651–656 (2018)

    Article  Google Scholar 

  30. Jaen-Cuellar, A.Y.; de Jesus, Romero-Troncoso R.; Morales-Velazquez, L.; Osornio-Rios, R.A.: PID-controller tuning optimization with genetic algorithms in servo systems. Int. J. Adv. Robot. Syst. 10(9), 324 (2013)

    Article  Google Scholar 

  31. Rahimian, M.S.; Raahemifar, K.: Optimal PID controller design for AVR system using particle swarm optimization algorithm. In: 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 000337–000340. IEEE (2011)

  32. Liu, Y.; Zhang, J.; Wang, S.: Optimization design based on PSO algorithm for PID controller. In: Fifth World Congress on Intelligent Control and Automation, 2004. WCICA 2004, vol. 3. IEEE, pp. 2419–2422 (2004)

  33. Jiang, C.; Ma, Y.; Wang, C.: PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP). Energy Convers. Manag. 47(9–10), 1222–1230 (2006)

    Article  Google Scholar 

  34. Ang, K.H.; Chong, G.; Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Article  Google Scholar 

  35. Bazanella, A.S.; Pereira, L.F.A.; Parraga, A.: A New method for PID tuning including plants without ultimate frequency. IEEE Trans. Control Syst. Technol. 25(2), 637–644 (2017)

    Article  Google Scholar 

  36. Kass, R.E.: Nonlinear regression analysis and its applications. J. Am. Stat. Assoc. 85(410), 594–596 (1990)

    Article  Google Scholar 

  37. Baty, F.; Ritz, C.; Charles, S.; Brutsche, M.; Flandrois, J.P.; Delignette-Muller, M.L.: A toolbox for nonlinear regression in R: the package nlstools. J. Stat. Softw. 66(5), 1–21 (2015)

    Article  Google Scholar 

  38. Ding, S.; Su, C.; Yu, J.: An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 36(2), 153–162 (2011)

    Article  Google Scholar 

  39. Guo, Z.H.; Wu, J.; Lu, H.Y.; Wang, J.Z.: A case study on a hybrid wind speed forecasting method using BP neural network. Knowl. Based Syst. 24(7), 1048–1056 (2011)

    Article  Google Scholar 

  40. Bai, Y.; Li, Y.; Wang, X.; Xie, J.; Li, C.: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 7(3), 557–566 (2016)

    Article  Google Scholar 

  41. Yu, F.; Xu, X.: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 134, 102–113 (2014)

    Article  Google Scholar 

  42. Wang, D.; Luo, H.; Grunder, O.; Lin, Y.; Guo, H.: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Appl. Energy 190, 390–407 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Foundation of Jiangsu Zhongtian Technology Co. Ltd., Natural Science Foundation of Suzhou City (SYG201837) and Natural Science Foundation of Nantong University-Nantong Joint Research Center for Intelligent Information Technology (KFKT2017A06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Yue, Y., Hu, F. et al. Accuracy Control of Fiber Cable’s Outer Diameter with Algorithms of Filtration, Prediction and PID Controller. Arab J Sci Eng 44, 9581–9597 (2019). https://doi.org/10.1007/s13369-019-03780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03780-3

Keywords

Navigation