Skip to main content
Log in

Experimental Analysis of the Performance of Mobile Manipulators Executing Generalized Point-to-Point Tasks

  • Technical Note-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article focuses on an experimental analysis of the performance of a mobile manipulator (MM) executing generalized point-to-point tasks. This leads to surpass constraints, depending on the mechanical structure of the robot, on the environment and on the task to be performed. The robotic system is made up of a robotic arm mounted on wheeled mobile robot. Polynomial trajectory planning method is applied to generate trajectories, assigned to a real robot. The experimentations deal with motion coordination, control and task execution problems. Different ways to execute generated trajectories on a real MM (RobuTER/ULM) are tested, and several parameters influencing the movement of the system are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Papadopoulos, E.; Poulakakis, J.: Planning and model-based control for mobile manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Japon (2000)

  2. Du, B.; Zhao, J.; Song, C.: Dexterity analysis for omni-directional wheeled mobile manipulator based on double quaternion. Chin. J. Mech. Eng. 26(3), 585–593 (2013)

    Article  Google Scholar 

  3. Bayle, B.; Renaud, M.; Fourquet, J.-Y.: Nonholonomic mobile manipulators: kinematics, velocities and redundancies. J. Intell. Rob. Syst. 36(1), 45–63 (2003)

    Article  Google Scholar 

  4. Luca, A.D.; Oriolo G.; Giordano, P.R.: Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators. In: IEEE International Conference on Robotics and Automation (ICRA 2006): Workshop on Mobile Manipulation, USA (2006)

  5. Soylu, S.; Buckham, B.J.; Podhorodeski, R.P.: Redundancy resolution for underwater mobile manipulators. Ocean Eng. 37, 325–343 (2010)

    Article  Google Scholar 

  6. Zhang, Y.; Xiao, L.; Yu, X.; Liao, B.; Zhang, Z.: Minimum movement scheme with wheels and joints coordinated simultaneously for mobile redundant manipulator. In: IEEE International Conference on Information and Automation, Chine (2013)

  7. Khatib, O.; Siciliano, B.: Springer Handbook of Robotics. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  8. Ogawa, S.; Konno, A.: Mobile manipulation of a humanoid robot. In: IEEE/SICE International Symposium on System Integration (SII 2012), Japon (2012)

  9. Fahimi, F.: Autonomous Robots: Modeling, Path Planning, and Control, vol. 107. Springer, New York (2009)

    Book  Google Scholar 

  10. Biagiotti, L.; Melchiorri, C.: Trajectory Planning For Automatic Machines and Robots. Springer, New York (2008)

    Google Scholar 

  11. Papadopoulos, E.; Papadimitriou, I.; Poulakakis, J.: Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems. Robot Auton Syst 51, 229–247 (2005)

    Article  Google Scholar 

  12. Urakubo, T.; Mashimo, T.; Kanade, T.: Optimal placement of a two-link manipulator for door opening. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), USA (2009)

  13. Ude, A.; Atkeson, C.G.; Riley, M.: Planning of joint trajectories for humanoid robots using B-spline wavelets. In IEEE International Conference on Robotics and Automation (ICRA 2000), USA (2000)

  14. Vannoy, J.; Xiao, J.: Real-time adaptive motion planning (RAMP) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Trans. Robot. 24(5), 1199–1212 (2008)

    Article  Google Scholar 

  15. Jiao, J.; Cao, Z.; Zhao, P.; Liu, X. Tan, M.: Bezier curve based path planning for a mobile manipulator in unknown environments. In: IEEE International Conference on Robotics and Biomimetics (ROBIO 2013), China (2013)

  16. Cong, D.; Liang, C.; Gong, Q.; Yang, X.; Liu, J.: Path planning and following of omnidirectional mobile robot based on B-spline. In: 2018 Chinese Control And Decision Conference (CCDC), China (2018)

  17. Yang, K.; Moon, S.; Yoo, S.; Kang, J.; Doh, N.L.; Kim, H.B.; Joo, S.: Spline-based RRT path planner for non-holonomic robots. J. Intell. Rob. Syst. 73(1–4), 763–782 (2014)

    Article  Google Scholar 

  18. Waheed, I.; Fotouhi, R.: Trajectory and temporal planning of a wheeled mobile robot on an uneven surface. Robotica 27(4), 481–498 (2009)

    Article  Google Scholar 

  19. Saska, M.; Spurný, V.; Vonásek, V.: Predictive control and stabilization of nonholonomic formations with integrated spline-path planning. Robot. Auton. Syst. 75, 379–397 (2016)

    Article  Google Scholar 

  20. Chen, Y.; Yan, L.; Wei, H.; Wang, T.: Optimal trajectory planning for industrial robots using harmony search algorithm. Ind Robot Int J 40(5), 502–512 (2013)

    Article  Google Scholar 

  21. Gasparetto, A.; Lanzutti, A.; Vidoni, R.; Zanotto, V.: Trajectory planning for manufacturing robots: algorithm definition and experimental results. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, pp. 609–618 (2010)

  22. Macfarlane, S.; Croft, E.A.: Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans. Robot. Autom. 19(1), 42–52 (2003)

    Article  Google Scholar 

  23. Liu, H.; Lai, X.; Wu, W.: Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot Comput Integr Manuf 29(2), 309–317 (2013)

    Article  Google Scholar 

  24. Zhang, K.; Guo, J.X.; Gao, X.S.: Cubic spline trajectory generation with axis jerk and tracking error constraints. Int. J. Precis. Eng. Manuf. 14(7), 1141–1146 (2013)

    Article  Google Scholar 

  25. You, W.; Kong, M.; Sun, L.; Diao, Y.: Control system design for heavy duty industrial robot. Ind. Robot. Int. J. 39(4), 365–380 (2012)

    Article  Google Scholar 

  26. Chettibi, T.; Lehtihet, H.E.: A new approach for point to point optimal motion planning problems of robotic manipulators. In: 6th Biennial Conference on Engineering Systems Design and Analysis (APM10), Turkey (2002)

  27. Haddad, M.; Chettibi, T.; Saidouni, T.; Hanchi, S.; Lehtihet, H.E.: Sub-optimal motion planner of mobile manipulators in generalized point-to-point task with stability constraint. In: Romansy, vol 16, pp. 171–178. Springer, Vienna (2006)

  28. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Mechanical Engineering Series, 4th edn. Springer, New York (2014)

    Book  Google Scholar 

  29. Akli, I.; Bouzouia, B.; Achour, N.: Motion analysis of a mobile manipulator executing pick-up tasks. Comput. Electr. Eng. 45, 45 (2015)

    Google Scholar 

  30. Craig, J.J.: Introduction to Robotics, Mechanics and Control, 3rd edn. Addison-Wesley Publication, Boston (2005)

    Google Scholar 

  31. Akli, I.; Bouzouia, B.: Time-dependant trajectory generation for tele-operated mobile manipulator. In: IEEE 3rd International Conference on Control, Engineering and Information Technology (CEIT2015), Algeria (2015)

  32. Akli, I.; Hentout, A.; Bouzouia, B.: Control modes validation for generalized point to point task execution. Application: RobuTER/UML mobile manipulator. In: IEEE International Symposium on Safety Security and Rescue Robotics (SSRR2012), USA (2012)

  33. Borenstein, J.; Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robot. Autom. 12(6), 869–880 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isma Akli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akli, I. Experimental Analysis of the Performance of Mobile Manipulators Executing Generalized Point-to-Point Tasks. Arab J Sci Eng 45, 2327–2339 (2020). https://doi.org/10.1007/s13369-019-03929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03929-0

Keywords

Navigation