Skip to main content
Log in

Immune Checkpoint Molecules and Maternal–Fetal Immunity

  • REVIEW
  • Published:
Current Obstetrics and Gynecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Because the fetus expresses paternally-derived foreign antigens, pregnancy poses unique immune challenges. The maternal immune system must balance protecting the semi-allogeneic fetus from immune rejection with defending the mother and fetus from pathogens. Fetally-derived trophoblast cells of the placenta serve as the immunologic interface with soluble and cellular maternal immune effectors and are thereby essential partners in supporting these tightly regulated interactions. While there are multiple ways that the maternal–fetal immune interface is controlled in a healthy pregnancy, this review highlights several of the immune checkpoint regulators thought to be centrally involved in maternal–fetal immunoregulation.

Recent Findings

Reproductive immunologists have shown that those fetal trophoblast cells that directly encounter maternal immune cells share many common features with cancer cells, shifting the paradigm of placental immunology away from transplantation biology and toward our extensive understanding of tumorigenesis. Both the post-implantation placenta and the growing neoplasm have many shared goals, including invasion, robust cellular proliferation, angiogenesis, and modulation of host immunity. One way in which both the human placenta and cancer cells protect themselves from immune attack is through the loss of, or neoexpression of, several important cell surface regulators of specific immune interactions known as immune checkpoints. Here, we will discuss several ways that tumors and the placenta utilize immune checkpoint pathways and inhibitors, including the loss of most classical major histocompatibility complex (MHC) molecules and neoexpression of several nonclassical MHC molecules, expression of novel immunosuppressive B7 family members and cell adhesion molecules, such as CD47, and modulation of indoleamine 2,3-dioxygenase (IDO) enzyme activity.

Summary

Finely tuned immune adaptation is fundamental to a successful reproduction. Failure to implement such adaptations can result in a variety of disorders, including pregnancy loss, abnormal placental invasion (e.g., placenta accreta/percreta), preeclampsia, and intrauterine growth restriction. Improved understanding of complex maternal-fetal immune interactions will be crucial to discover mechanisms underpinning these pregnancy complications, which, in turn, will help inform preventative and/or therapeutic clinical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuhler GM. The immune system and microbiome in pregnancy. Best Pract Res Clin Gastroenterol. 2020;101671:44–5. https://doi.org/10.1016/j.bpg.2020.101671.

    Article  Google Scholar 

  2. Lyall F, Bulmer JN, Duffie E, Cousins F, Theriault A, Robson SC. Human trophoblast invasion and spiral artery transformation: the role of PECAM-1 in normal pregnancy, preeclampsia, and fetal growth restriction. Am J Pathol. 2001;158:1713–21. https://doi.org/10.1016/S0002-9440(10)64127-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aisagbonhi O, Morris GP. Human leukocyte antigens in pregnancy and preeclampsia. Front Genet. 2022;13:884275. https://doi.org/10.3389/fgene.2022.884275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abril-Rodriguez G, Ribas A. SnapShot: immune checkpoint inhibitors. Cancer Cell. 2017;31(848–848).

    Article  CAS  PubMed  Google Scholar 

  5. Persson G, Jorgensen N, Nilsson LL, Andersen LHJ, Hviid TVF. A role for both HLA-F and HLA-G in reproduction and during pregnancy? Hum Immunol. 2020;81:127–33. https://doi.org/10.1016/j.humimm.2019.09.006.

    Article  CAS  PubMed  Google Scholar 

  6. Klein J, Sato A. The HLA system First of two parts. N Engl J Med. 2000;343:702–9. https://doi.org/10.1056/NEJM200009073431006.

    Article  CAS  PubMed  Google Scholar 

  7. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18:325–39. https://doi.org/10.1038/nri.2017.143.

    Article  CAS  PubMed  Google Scholar 

  8. Cruz-Tapias P, Castiblanco, J, Anaya, J. Chapter 10: Major histocompatibility complex: Antigen processing and presentation. In: Anaya, JM, Shoenfeld, Y, Rojas-Villarraga, A, Levy, RA, & Cervera, R, editors. Autoimmunity: From Bench to Bedside (Internet); 2013.

  9. Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol. 2017;38:272–86. https://doi.org/10.1016/j.it.2017.01.009.

    Article  CAS  PubMed  Google Scholar 

  10. Lin XX, Xie YM, Zhao SJ, Liu CY, Mor G, Liao AH. Human leukocyte antigens: the unique expression in trophoblasts and their crosstalk with local immune cells. Int J Biol Sci. 2022;18:4043–52. https://doi.org/10.7150/ijbs.73616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aptsiauri N, Garrido F. The challenges of HLA class I loss in cancer immunotherapy: facts and hopes. Clin Cancer Res. 2022;28:5021–9. https://doi.org/10.1158/1078-0432.CCR-21-3501.

    Article  CAS  PubMed  Google Scholar 

  12. Arnaiz-Villena A, et al. HLA-G: function, polymorphisms and pathology. Int J Immunogenet. 2021;48:172–92. https://doi.org/10.1111/iji.12513.

    Article  CAS  PubMed  Google Scholar 

  13. Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med. 1999;189:1093–100. https://doi.org/10.1084/jem.189.7.1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E. The immunosuppressive molecule HLA-G and its clinical implications. Crit Rev Clin Lab Sci. 2012;49:63–84. https://doi.org/10.3109/10408363.2012.677947.

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Zhou Y, Wei H. Roles of HLA-G in the maternal-fetal immune microenvironment. Front Immunol. 2020;11:592010. https://doi.org/10.3389/fimmu.2020.592010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nilsson LL, Hviid TVF. HLA class Ib-receptor interactions during embryo implantation and early pregnancy. Hum Reprod Update. 2022;28:435–54. https://doi.org/10.1093/humupd/dmac007.

    Article  CAS  PubMed  Google Scholar 

  17. Rajagopalan S, Long EO. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol. 2012;3:258. https://doi.org/10.3389/fimmu.2012.00258.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rajagopalan S, et al. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol. 2006;4:e9. https://doi.org/10.1371/journal.pbio.0040009.

    Article  CAS  PubMed  Google Scholar 

  19. Zhuang B, Shang J, Yao Y. HLA-G: an important mediator of maternal-fetal immune-tolerance. Front Immunol. 2021;12:744324. https://doi.org/10.3389/fimmu.2021.744324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T cells in pregnancy: it is not all about FOXP3. Front Immunol. 2020;11:1182. https://doi.org/10.3389/fimmu.2020.01182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tilburgs T, et al. Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J Reprod Immunol. 2009;82:148–57. https://doi.org/10.1016/j.jri.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  22. Svensson-Arvelund J, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015;194:1534–44. https://doi.org/10.4049/jimmunol.1401536.

    Article  CAS  PubMed  Google Scholar 

  23. Goodridge JP, Burian A, Lee N, Geraghty DE. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors. J Immunol. 2013;191:3553–62. https://doi.org/10.4049/jimmunol.1300081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang L, et al. Extracellular vesicle-mediated secretion of HLA-E by trophoblasts maintains pregnancy by regulating the metabolism of decidual NK cells. Int J Biol Sci. 2021;17:4377–95. https://doi.org/10.7150/ijbs.63390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Papuchova H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface. Front Immunol. 2019;10:2730. https://doi.org/10.3389/fimmu.2019.02730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lashley LE, Haasnoot GW, Spruyt-Gerritse M, Claas FH. Selective advantage of HLA matching in successful uncomplicated oocyte donation pregnancies. J Reprod Immunol. 2015;112:29–33. https://doi.org/10.1016/j.jri.2015.05.006.

    Article  PubMed  Google Scholar 

  27. Meuleman T, Haasnoot GW, van Lith JMM, Verduijn W, Bloemenkamp KWM, Claas FHJ. Paternal HLA-C is a risk factor in unexplained recurrent miscarriage. Am J Reprod Immunol. 2018;79(2). https://doi.org/10.1111/aji.12797.

  28. Collins M, Ling V, Carreno BM. The B7 family of immune-regulatory ligands. Genome Biol. 2005;6:223. https://doi.org/10.1186/gb-2005-6-6-223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48. https://doi.org/10.1146/annurev.immunol.23.021704.115611.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Zheng Q, Jin L. The role of B7 family molecules in maternal-fetal immunity. Front Immunol. 2020;11:458. https://doi.org/10.3389/fimmu.2020.00458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol. 2023;20(7):694–713. https://doi.org/10.1038/s41423-023-01019-8.

  32. Veras E, Kurman RJ, Wang TL, Shih IM. PD-L1 expression in human placentas and gestational trophoblastic diseases. Int J Gynecol Pathol. 2017;36:146–53. https://doi.org/10.1097/pgp.0000000000000305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petroff MG, Kharatyan E, Torry DS, Holets L. The immunomodulatory proteins B7-DC, B7–H2, and B7–H3 are differentially expressed across gestation in the human placenta. Am J Pathol. 2005;167:465–73. https://doi.org/10.1016/s0002-9440(10)62990-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Latchman Y, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8. https://doi.org/10.1038/85330.

    Article  CAS  PubMed  Google Scholar 

  35. Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 2016;7:550. https://doi.org/10.3389/fimmu.2016.00550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karvas RM, et al. Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1 and ACTC1 as markers of early first trimester human trophoblast. Mol Hum Reprod. 2020;26:425–40. https://doi.org/10.1093/molehr/gaaa029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Galazka K, et al. Changes in the subpopulation of CD25+ CD4+ and FOXP3+ regulatory T cells in decidua with respect to the progression of labor at term and the lack of analogical changes in the subpopulation of suppressive B7–H4 macrophages–a preliminary report. Am J Reprod Immunol. 2009;61:136–46. https://doi.org/10.1111/j.1600-0897.2008.00674.x.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J, et al. The immune checkpoint molecule, VTCN1/B7-H4, guides differentiation and suppresses proinflammatory responses and MHC class I expression in an embryonic stem cell-derived model of human trophoblast. Front Endocrinol (Lausanne). 2023;14:1069395. https://doi.org/10.3389/fendo.2023.1069395.

    Article  PubMed  Google Scholar 

  39. Löhning M, et al. Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J Exp Med. 2003;197:181–93. https://doi.org/10.1084/jem.20020632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McAdam AJ, et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol. 2000;165:5035–40. https://doi.org/10.4049/jimmunol.165.9.5035.

    Article  CAS  PubMed  Google Scholar 

  41. Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol. 2020;11:2025. https://doi.org/10.3389/fimmu.2020.02025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chapoval AI, et al. B7–H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001;2:269–74. https://doi.org/10.1038/85339.

    Article  CAS  PubMed  Google Scholar 

  43. Chen C, Shen Y, Qu QX, Chen XQ, Zhang XG, Huang JA. Induced expression of B7–H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp Cell Res. 2013;319:96–102. https://doi.org/10.1016/j.yexcr.2012.09.006.

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, et al. B7–H3 promotes gastric cancer cell migration and invasion. Oncotarget. 2017;8:71725–35. https://doi.org/10.18632/oncotarget.17847.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang L, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208:577–92. https://doi.org/10.1084/jem.20100619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villarroel-Espindola F, et al. Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res. 2018;24:1562–73. https://doi.org/10.1158/1078-0432.Ccr-17-2542.

    Article  CAS  PubMed  Google Scholar 

  47. Deng J, et al. Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol Res. 2019;7:1079–90. https://doi.org/10.1158/2326-6066.Cir-18-0507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zong L, Zhang M, Wang W, Wan X, Yang J, Xiang Y. PD-L1, B7–H3 and VISTA are highly expressed in gestational trophoblastic neoplasia. Histopathology. 2019;75:421–30. https://doi.org/10.1111/his.13882.

    Article  PubMed  Google Scholar 

  49. Zhao SJ, Muyayalo KP, Luo J, Huang D, Mor G, Liao AH. Next generation of immune checkpoint molecules in maternal-fetal immunity. Immunol Rev. 2022;308:40–54. https://doi.org/10.1111/imr.13073.

    Article  CAS  PubMed  Google Scholar 

  50. Mellor AL, Munn DH. Extinguishing maternal immune responses during pregnancy: implications for immunosuppression. Semin Immunol. 2001;13:213–8. https://doi.org/10.1006/smim.2000.0317.

    Article  CAS  PubMed  Google Scholar 

  51. Mackler AM, Barber EM, Takikawa O, Pollard JW. Indoleamine 2,3-dioxygenase is regulated by IFN-gamma in the mouse placenta during Listeria monocytogenes infection. J Immunol. 2003;170:823–30. https://doi.org/10.4049/jimmunol.170.2.823.

    Article  CAS  PubMed  Google Scholar 

  52. Repnik U, et al. Comparison of macrophage phenotype between decidua basalis and decidua parietalis by flow cytometry. Placenta. 2008;29:405–12. https://doi.org/10.1016/j.placenta.2008.02.004.

    Article  CAS  PubMed  Google Scholar 

  53. Stammers M, Rowen L, Rhodes D, Trowsdale J, Beck S. BTL-II: a polymorphic locus with homology to the butyrophilin gene family, located at the border of the major histocompatibility complex class II and class III regions in human and mouse. Immunogenetics. 2000;51:373–82. https://doi.org/10.1007/s002510050633.

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen T, Liu XK, Zhang Y, Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol. 2006;176:7354–60. https://doi.org/10.4049/jimmunol.176.12.7354.

    Article  CAS  PubMed  Google Scholar 

  55. Swanson RM, et al. Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells. J Immunol. 2013;190:2027–35. https://doi.org/10.4049/jimmunol.1201760.

    Article  CAS  PubMed  Google Scholar 

  56. Cui C, et al. In vivo administration of recombinant BTNL2-Fc fusion protein ameliorates graft-versus-host disease in mice. Cell Immunol. 2019;335:22–9. https://doi.org/10.1016/j.cellimm.2018.10.008.

    Article  CAS  PubMed  Google Scholar 

  57. Rieder SA, et al. B7–H7 (HHLA2) inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling. Cell Mol Immunol. 2021;18:1503–11. https://doi.org/10.1038/s41423-020-0361-7.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu Z, et al. B7H6 serves as a negative prognostic marker and an immune modulator in human pancreatic cancer. Front Oncol. 2022;12:814312. https://doi.org/10.3389/fonc.2022.814312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao R, et al. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci USA. 2013;110:9879–84. https://doi.org/10.1073/pnas.1303524110.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Enninga EAL, et al. Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am J Reprod Immunol. 2018;79: e12795.

    Article  PubMed  Google Scholar 

  61. Mach P, et al. Changes in the blood serum levels of the costimulatory soluble B7–H4 molecule in pregnant women during the peripartal phase. Am J Reprod Immunol. 2015;74:209–15. https://doi.org/10.1111/aji.12392.

    Article  CAS  PubMed  Google Scholar 

  62. Mach P, et al. Serum concentrations of soluble B7–H4 in early pregnancy are elevated in women with preterm premature rupture of fetal membranes. Am J Reprod Immunol. 2016;76:149–54. https://doi.org/10.1111/aji.12527.

    Article  CAS  PubMed  Google Scholar 

  63. Mach P, et al. Soluble B7–H4 blood serum levels are elevated in women at high risk for preeclampsia in the first trimester, as well as in patients with confirmed preeclampsia. Am J Reprod Immunol. 2018;80:e12988. https://doi.org/10.1111/aji.12988.

    Article  CAS  PubMed  Google Scholar 

  64. Enninga EAL, et al. Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am J Reprod Immunol. 2018;79(2):e12795. https://doi.org/10.1111/aji.12795

  65. Mach P, Kimmig R, Kasimir-Bauer S, Buderath P. Association of soluble B7–H4 and circulating tumor cells in blood of advanced epithelial ovarian cancer patients. Front Oncol. 2021;11:721067. https://doi.org/10.3389/fonc.2021.721067.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhu X, Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017;8:97671. https://doi.org/10.18632/oncotarget.18311.

    Article  Google Scholar 

  67. Frigola X, et al. Identification of a soluble form of B7–H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin Cancer Res. 2011;17:1915–23. https://doi.org/10.1158/1078-0432.CCR-10-0250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vargas A, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. Faseb j. 2014;28:3703–19. https://doi.org/10.1096/fj.13-239053.

    Article  CAS  PubMed  Google Scholar 

  69. Chen G, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6. https://doi.org/10.1038/s41586-018-0392-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu R, et al. Exosomal B7–H3 facilitates colorectal cancer angiogenesis and metastasis through AKT1/mTOR/VEGFA pathway. Cell Signal. 2023;109:110737. https://doi.org/10.1016/j.cellsig.2023.110737.

    Article  CAS  PubMed  Google Scholar 

  71. Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov. 2002;1:609–20. https://doi.org/10.1038/nrd870.

    Article  CAS  PubMed  Google Scholar 

  72. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–43. https://doi.org/10.1016/j.it.2012.10.001.

    Article  CAS  PubMed  Google Scholar 

  73. Fallarino F, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–77. https://doi.org/10.1038/sj.cdd.4401073.

    Article  CAS  PubMed  Google Scholar 

  74. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8. https://doi.org/10.4049/jimmunol.0903670.

    Article  CAS  PubMed  Google Scholar 

  75. Kudo Y, et al. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol. 2004;61:87–98. https://doi.org/10.1016/j.jri.2003.11.004.

    Article  CAS  PubMed  Google Scholar 

  76. Kudo Y, et al. Mechanisms regulating the expression of indoleamine 2,3-dioxygenase during decidualization of human endometrium. Hum Reprod. 2004;19:1222–30. https://doi.org/10.1093/humrep/deh218.

    Article  CAS  PubMed  Google Scholar 

  77. Wei H, et al. Abnormal expression of indoleamine 2, 3-dioxygenase in human recurrent miscarriage. Reprod Sci. 2019 Mar 4;1933719119833788. https://doi.org/10.1177/1933719119833788

  78. Iwahashi N, Yamamoto M, Nanjo S, Toujima S, Minami S, Ino K. Downregulation of indoleamine 2, 3-dioxygenase expression in the villous stromal endothelial cells of placentas with preeclampsia. J Reprod Immunol. 2017;119:54–60. https://doi.org/10.1016/j.jri.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  79. Munn DH, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3. https://doi.org/10.1126/science.281.5380.1191.

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Adams O, Besken K, Oberdorfer C, MacKenzie CR, Takikawa O, Daubener W. Role of indoleamine-2,3-dioxygenase in alpha/beta and gamma interferon-mediated antiviral effects against herpes simplex virus infections. J Virol. 2004;78:2632–6. https://doi.org/10.1128/jvi.78.5.2632-2636.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Popov A, et al. Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J Clin Invest. 2006;116:3160–70. https://doi.org/10.1172/JCI28996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Knubel CP, et al. Indoleamine 2,3-dioxigenase (IDO) is critical for host resistance against Trypanosoma cruzi. FASEB J. 2010;24:2689–701. https://doi.org/10.1096/fj.09-150920.

    Article  CAS  PubMed  Google Scholar 

  83. Kamimura S, Eguchi K, Yonezawa M, Sekiba K. Localization and developmental change of indoleamine 2 3-dioxygenase activity in the human placenta. Acta Med Okayama. 1991;45:135–9. https://doi.org/10.18926/AMO/32206.

    Article  CAS  PubMed  Google Scholar 

  84. Sedlmayr P. Indoleamine 2,3-dioxygenase in materno-fetal interaction. Curr Drug Metab. 2007;8:205–8. https://doi.org/10.2174/138920007780362491.

    Article  CAS  PubMed  Google Scholar 

  85. Kudo Y. The role of placental indoleamine 2,3-dioxygenase in human pregnancy. Obstet Gynecol Sci. 2013;56:209–16. https://doi.org/10.5468/ogs.2013.56.4.209.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chang RQ, Li DJ, Li MQ. The role of indoleamine-2,3-dioxygenase in normal and pathological pregnancies. Am J Reprod Immunol. 2018;79:e12786. https://doi.org/10.1111/aji.12786.

    Article  CAS  PubMed  Google Scholar 

  87. Zardoya-Laguardia P, et al. Endothelial indoleamine 2,3-dioxygenase-1 regulates the placental vascular tone and is deficient in intrauterine growth restriction and pre-eclampsia. Sci Rep. 2018;8:5488. https://doi.org/10.1038/s41598-018-23896-0.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3:51. https://doi.org/10.1186/s40425-015-0094-9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tang K, Wu YH, Song Y, Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol. 2021;14:68. https://doi.org/10.1186/s13045-021-01080-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barclay AN, Van den Berg TK. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25–50. https://doi.org/10.1146/annurev-immunol-032713-120142.

    Article  CAS  PubMed  Google Scholar 

  91. Takizawa H, Manz MG. Macrophage tolerance: CD47-SIRP-alpha-mediated signals matter. Nat Immunol. 2007;8:1287–9. https://doi.org/10.1038/ni1207-1287.

    Article  CAS  PubMed  Google Scholar 

  92. Chao MP, Weissman IL, Majeti R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–32. https://doi.org/10.1016/j.coi.2012.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ide K, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A. 2007;104:5062–6. https://doi.org/10.1073/pnas.0609661104.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kovacs AF, et al. The impact of circulating preeclampsia-associated extracellular vesicles on the migratory activity and phenotype of THP-1 monocytic cells. Sci Rep. 2018;8:5426. https://doi.org/10.1038/s41598-018-23706-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tong M, et al. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. Hum Reprod. 2016;31:687–99. https://doi.org/10.1093/humrep/dew004.

    Article  CAS  PubMed  Google Scholar 

  96. Liu X, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21:1209–15. https://doi.org/10.1038/nm.3931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vonderheide RH. CD47 blockade as another immune checkpoint therapy for cancer. Nat Med. 2015;21:1122–3. https://doi.org/10.1038/nm.3965.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors’ research is supported by grants 1RO1HD094937 from the National Institutes of Health (DJS), R21A1145071 from the National Institutes of Health (DJS, JZ), and pilot grant from the University of Missouri (SC).

Author information

Authors and Affiliations

Authors

Contributions

S.M., J.Z., and S.C. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Danny J. Schust.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebane, S., Zhou, J., Choi, S. et al. Immune Checkpoint Molecules and Maternal–Fetal Immunity. Curr Obstet Gynecol Rep 13, 37–45 (2024). https://doi.org/10.1007/s13669-024-00372-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13669-024-00372-3

Keywords

Navigation