Skip to main content

Advertisement

Log in

Immunologic Aspects of Endometriosis

  • REVIEW
  • Published:
Current Obstetrics and Gynecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Endometriosis is now widely considered to be a disease characterized by chronic inflammation. The purpose of this review is to summarize the literature regarding the immunologic aspects of endometriosis and highlight recent advances in the field.

Summary

The microenvironment of the endometrium and peritoneal cavity form the foundation for development of endometriosis. Each is structurally comprised of an assortment of immunologic components, including immune cells, signaling factors, and the microbiome, in an estrogen-dependent, pro-inflammatory setting, fueling endometriotic disease. This leads to the angiogenesis and neuroinflammation seen in disease progression.

Recent Findings

Recent findings center on translational studies that build on years of research on the interplay of the immune system, steroidogenic hormones, and endometriosis to develop new biomarkers for early detection and therapeutics for prevention and treatment of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, et al. Endometriosis. Endocr Rev. 2019;40:1048–79.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen L-C, Hsu J-W, Huang K-L, Bai Y-M, Su T-P, Li C-T, et al. Risk of developing major depression and anxiety disorders among women with endometriosis: a longitudinal follow-up study. J Affect Disord. 2016;190:282–5.

    Article  PubMed  Google Scholar 

  3. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am. 1997;24:235–58.

    Article  CAS  PubMed  Google Scholar 

  4. Simoens S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A, Brandes I, et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod. 2012;27:1292–9.

    Article  PubMed  Google Scholar 

  5. Parazzini F, Esposito G, Tozzi L, Noli S, Bianchi S. Epidemiology of endometriosis and its comorbidities. EJOG. 2017;209:3–7.

    CAS  Google Scholar 

  6. Zhou JZ, Way SS, Chen K. Immunology of uterine and vaginal mucosae. Trends Immunol. 2018;39:355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol. 2015;15:217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee SK, Kim CJ, Kim D-J, Kang J-H. Immune cells in the female reproductive tract. Immune Netw. 2015;15:16–26.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yeaman GR, Collins JE, Fanger MW, Wira CR, Lydyard PM. CD8+ T cells in human uterine endometrial lymphoid aggregates: evidence for accumulation of cells by trafficking. Immunology. 2001;102:434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeziorska M, Salamonsen LA, Woolley DE. Mast cell and eosinophil distribution and activation in human endometrium throughout the menstrual cycle. Biol Reprod. 1995;53:312–20.

    Article  CAS  PubMed  Google Scholar 

  11. Ribatti D, Vacca A, Nico B, Crivellato E, Roncali L, Dammacco F. The role of mast cells in tumour angiogenesis. Br J Haematol. 2001;115:514–21.

    Article  CAS  PubMed  Google Scholar 

  12. King A. Uterine leukocytes and decidualization. Hum Reprod Update. 2000;6:28–36.

    Article  CAS  PubMed  Google Scholar 

  13. Song JY, Fraser IS. Effects of progestogens on human endometrium. Obstet Gynecol Surv. 1995;50:385–94.

    Article  CAS  PubMed  Google Scholar 

  14. Wira CR, Fahey JV, Rodriguez-Garcia M, Shen Z, Patel MV. Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am J Reprod Immunol. 2014;72:236–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee S, Kim J, Jang B, Hur S, Jung U, Kil K, et al. Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. J Immunol. 2010;185:756–62.

    Article  CAS  PubMed  Google Scholar 

  16. Carlino C, Trotta E, Stabile H, Morrone S, Bulla R, Soriani A, et al. Chemerin regulates NK cell accumulation and endothelial cell morphogenesis in the decidua during early pregnancy. J Clin Endocrinol Metab. 2012;97:3603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N, Lankry D, et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol. 2008;181:1869–76.

    Article  CAS  PubMed  Google Scholar 

  18. Drury JA, Parkin KL, Coyne L, Giuliani E, Fazleabas AT, Hapangama DK. The dynamic changes in the number of uterine natural killer cells are specific to the eutopic but not to the ectopic endometrium in women and in a baboon model of endometriosis. Reprod Biol Endocrinol. 2018;16:67.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Flynn L, Byrne B, Carton J, Kelehan P, O’Herlihy C, O’Farrelly C. Menstrual cycle dependent fluctuations in NK and T-lymphocyte subsets from non-pregnant human endometrium. Am J Reprod Immunol. 2000;43:209–17.

    Article  CAS  PubMed  Google Scholar 

  20. King AE, Critchley HOD. Oestrogen and progesterone regulation of inflammatory processes in the human endometrium. J Steroid Biochem Mol Biol. 2010;120:116–26.

    Article  CAS  PubMed  Google Scholar 

  21. Mselle TF, Meadows SK, Eriksson M, Smith JM, Shen L, Wira CR, et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin Immunol. 2007;124:69–76.

    Article  CAS  PubMed  Google Scholar 

  22. Salamonsen LA, Woolley DE. Menstruation: induction by matrix metalloproteinases and inflammatory cells. J Reprod Immunol. 1999;44:1–27.

    Article  CAS  PubMed  Google Scholar 

  23. Tang AW, Alfirevic Z, Quenby S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: a systematic review. Hum Reprod. 2011;26:1971–80.

    Article  CAS  PubMed  Google Scholar 

  24. Klentzeris LD, Bulmer JN, Liu DT, Morrison L. Endometrial leukocyte subpopulations in women with endometriosis. Eur J Obstet Gynecol Reprod Biol. 1995;63:41–7.

    Article  CAS  PubMed  Google Scholar 

  25. Marchal G. Advances in experimental medicine & biology. Biochimie. 1997;1:63.

    Article  Google Scholar 

  26. Salamonsen LA, Lathbury LJ. Endometrial leukocytes and menstruation. Hum Reprod Update. 2000;6:16–27.

    Article  CAS  PubMed  Google Scholar 

  27. Givan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM, et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol. 1997;38:350–9.

    Article  CAS  PubMed  Google Scholar 

  28. Salamonsen LA, Zhang J, Brasted M. Leukocyte networks and human endometrial remodelling. J Reprod Immunol. 2002;57:95–108.

    Article  CAS  PubMed  Google Scholar 

  29. Starkey PM, Clover LM, Rees MC. Variation during the menstrual cycle of immune cell populations in human endometrium. Eur J Obstet Gynecol Reprod Biol. 1991;39:203–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sivridis E, Giatromanolaki A, Agnantis N, Anastasiadis P. Mast cell distribution and density in the normal uterus–metachromatic staining using lectins. Eur J Obstet Gynecol Reprod Biol. 2001;98:109–13.

    Article  CAS  PubMed  Google Scholar 

  31. Li XF, Charnock-Jones DS, Zhang E, Hiby S, Malik S, Day K, et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab. 2001;86:1823–34.

    CAS  PubMed  Google Scholar 

  32. Lysakova-Devine T, O’Farrelly C. Tissue-specific NK cell populations and their origin. J Leukoc Biol. 2014;96:981–90.

    Article  PubMed  Google Scholar 

  33. Petta CA, Peloggia A, Salamonsen L, De Angelo AL, Zhang J, Bahamondes L. Natural killer cells and telomerase in the endometrium of patients with endometriosis. JEUD. 2010;2:182–8.

    Google Scholar 

  34. Giuliani E, Parkin KL, Lessey BA, Young SL, Fazleabas AT. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72:262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez-Garcia M, Barr FD, Crist SG, Fahey JV, Wira CR. Phenotype and susceptibility to HIV infection of CD4+ Th17 cells in the human female reproductive tract. Mucosal Immunol. 2014;7:1375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White HD, Crassi KM, Givan AL, Stern JE, Gonzalez JL, Memoli VA, et al. CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J Immunol. 1997;158:3017–27.

    Article  CAS  PubMed  Google Scholar 

  37. Xue Q, Lin Z, Cheng Y-H, Huang C-C, Marsh E, Yin P, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77:681–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mettler L, Volkov NI, Kulakov VI, Jürgensen A, Parwaresch MR. Lymphocyte subsets in the endometrium of patients with endometriosis throughout the menstrual cycle. Am J Reprod Immunol. 1996;36:342–8.

    Article  CAS  PubMed  Google Scholar 

  39. Witz CA, Montoya IA, Dey TD, Schenken RS. Characterization of lymphocyte subpopulations and T cell activation in endometriosis. Am J Reprod Immunol. 1994;32:173–9.

    Article  CAS  PubMed  Google Scholar 

  40. Khan KN, Masuzaki H, Fujishita A, Kitajima M, Sekine I, Matsuyama T, et al. Estrogen and progesterone receptor expression in macrophages and regulation of hepatocyte growth factor by ovarian steroids in women with endometriosis. Hum Reprod. 2005;20:2004–13.

    Article  CAS  PubMed  Google Scholar 

  41. Berbic M, Schulke L, Markham R, Tokushige N, Russell P, Fraser IS. Macrophage expression in endometrium of women with and without endometriosis. Hum Reprod. 2009;24:325–32.

    Article  CAS  PubMed  Google Scholar 

  42. Khan KN, Kitajima M, Hiraki K, Yamaguchi N, Katamine S, Matsuyama T, et al. Escherichia coli contamination of menstrual blood and effect of bacterial endotoxin on endometriosis. Fertil Steril. 2010;94:2860–3.

    Article  CAS  PubMed  Google Scholar 

  43. Takebayashi A, Kimura F, Kishi Y, Ishida M, Takahashi A, Yamanaka A, et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am J Reprod Immunol. 2015;73:221–31.

    Article  CAS  PubMed  Google Scholar 

  44. Ning F, Liu H, Lash GE. The role of decidual macrophages during normal and pathological pregnancy. Am J Reprod Immunol. 2016;75:298–309.

    Article  PubMed  Google Scholar 

  45. Thiruchelvam U, Dransfield I, Saunders PTK, Critchley HOD. The importance of the macrophage within the human endometrium. J Leukoc Biol. 2013;93:217–25.

    Article  CAS  PubMed  Google Scholar 

  46. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod. 1998;13:1686–90.

    Article  CAS  PubMed  Google Scholar 

  48. Takehara M, Ueda M, Yamashita Y, Terai Y, Hung Y-C, Ueki M. Vascular endothelial growth factor A and C gene expression in endometriosis. Hum Pathol. 2004;35:1369–75.

    Article  CAS  PubMed  Google Scholar 

  49. Galli SJ. New concepts about the mast cell. N Engl J Med. 1993;328:257–65.

    Article  CAS  PubMed  Google Scholar 

  50. Galli SJ. Mast cells and basophils. Curr Opin Hematol. 2000;7:32–9.

    Article  CAS  PubMed  Google Scholar 

  51. Antsiferova YS, Sotnikova NY, Posiseeva LV, Shor AL. Changes in the T-helper cytokine profile and in lymphocyte activation at the systemic and local levels in women with endometriosis. Fertil Steril. 2005;84:1705–11.

    Article  CAS  PubMed  Google Scholar 

  52. Scheerer C, Bauer P, Chiantera V, Sehouli J, Kaufmann A, Mechsner S. Characterization of endometriosis-associated immune cell infiltrates (EMaICI). Arch Gynecol Obstet. 2016;294:657–64.

    Article  CAS  PubMed  Google Scholar 

  53. Mathur S, Peress MR, Williamson HO, Youmans CD, Maney SA, Garvin AJ, et al. Autoimmunity to endometrium and ovary in endometriosis. Clin Exp Immunol. 1982;50:259–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–69.

    Article  Google Scholar 

  55. Koninckx PR, Ide P, Vandenbroucke W, Brosens IA. New aspects of the pathophysiology of endometriosis and associated infertility. J Reprod Med. 1980;24:257–60.

    CAS  PubMed  Google Scholar 

  56. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 1984;64:151–4.

    CAS  PubMed  Google Scholar 

  57. Defrère S, González-Ramos R, Lousse J-C, Colette S, Donnez O, Donnez J, et al. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol Histopathol. 2011;26:1083–92.

    PubMed  Google Scholar 

  58. Koninckx PR, Renaer M, Brosens IA. Origin of peritoneal fluid in women: an ovarian exudation product. Br J Obstet Gynaecol. 1980;87:177–83.

    Article  CAS  PubMed  Google Scholar 

  59. Koninckx PR, Heyns W, Verhoeven G, Van Baelen H, Lissens WD, De Moor P, et al. Biochemical characterization of peritoneal fluid in women during the menstrual cycle. J Clin Endocrinol Metab. 1980;51:1239–44.

    Article  CAS  PubMed  Google Scholar 

  60. Koninckx PR, De Moor P, Brosens IA. Diagnosis of the luteinized unruptured follicle syndrome by steroid hormone assays on peritoneal fluid. Br J Obstet Gynaecol. 1980;87:929–34.

    Article  CAS  PubMed  Google Scholar 

  61. Koninckx PR, Brosens IA, Heyns WH. Peritoneal fluid in female fertility and sterility (author’s transl). Contracept Fertil Sex (Paris). 1980;8:145–52.

    CAS  PubMed  Google Scholar 

  62. Koninckx PR, Kennedy SH, Barlow DH. Endometriotic disease: the role of peritoneal fluid. Hum Reprod Update. 1998;4:741–51.

    Article  CAS  PubMed  Google Scholar 

  63. Weil SJ, Wang S, Perez MC, Lyttle CR. Chemotaxis of macrophages by a peritoneal fluid protein in women with endometriosis. Fertil Steril. 1997;67:865–9.

    Article  CAS  PubMed  Google Scholar 

  64. Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR, Vandeputte M. Immunosuppressive activity of peritoneal fluid in women with endometriosis. Obstet Gynecol. 1993;82:206–12.

    CAS  PubMed  Google Scholar 

  65. Ho HN, Chao KH, Chen HF, Wu MY, Yang YS, Lee TY. Peritoneal natural killer cytotoxicity and CD25+ CD3+ lymphocyte subpopulation are decreased in women with stage III-IV endometriosis. Hum Reprod. 1995;10:2671–5.

    Article  CAS  PubMed  Google Scholar 

  66. Rana N, Braun DP, House R, Gebel H, Rotman C, Dmowski WP. Basal and stimulated secretion of cytokines by peritoneal macrophages in women with endometriosis. Fertil Steril. 1996;65:925–30.

    Article  CAS  PubMed  Google Scholar 

  67. Halme J, White C, Kauma S, Estes J, Haskill S. Peritoneal macrophages from patients with endometriosis release growth factor activity in vitro. J Clin Endocrinol Metab. 1988;66:1044–9.

    Article  CAS  PubMed  Google Scholar 

  68. Fukaya T, Sugawara J, Yoshida H, Yajima A. The role of macrophage colony stimulating factor in the peritoneal fluid in infertile patients with endometriosis. Tohoku J Exp Med. 1994;172:221–6.

    Article  CAS  PubMed  Google Scholar 

  69. Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol. 1994;83:287–92.

    CAS  PubMed  Google Scholar 

  70. McLaren J, Prentice A, Charnock-Jones DS, Smith SK. Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Hum Reprod. 1996;11:220–3.

    Article  CAS  PubMed  Google Scholar 

  71. Giudice LC, Dsupin BA, Gargosky SE, Rosenfeld RG, Irwin JC. The insulin-like growth factor system in human peritoneal fluid: its effects on endometrial stromal cells and its potential relevance to endometriosis. J Clin Endocrinol Metab. 1994;79:1284–93.

    CAS  PubMed  Google Scholar 

  72. Ansbacher R, Boyson WA, Morris JA. Sterility of the uterine cavity. Am J Obstet Gynecol. 1967;99:394–6.

    Article  CAS  PubMed  Google Scholar 

  73. Møller BR, Kristiansen FV, Thorsen P, Frost L, Mogensen SC. Sterility of the uterine cavity. Acta Obstet Gynecol Scand. 1995;74:216–9.

    Article  PubMed  Google Scholar 

  74. Mitchell CM, Haick A, Nkwopara E, Garcia R, Rendi M, Agnew K, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol. 2015;212(611):e1-9.

    Google Scholar 

  75. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215:684–703.

    Article  PubMed  Google Scholar 

  76. Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders? Front Immunol. 2018;9:208.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Koninckx PR, Ussia A, Wattiez A, Adamyan L, Martin DC, Gordts S. The severity and frequency distribution of endometriosis subtypes at different ages: a model to understand the natural history of endometriosis based on single centre/single surgeon data. Facts Views Vis Obgyn. 2021;13:209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dols JAM, Molenaar D, van der Helm JJ, Caspers MPM, de Kat A-B, Schuren FHJ, et al. Molecular assessment of bacterial vaginosis by Lactobacillus abundance and species diversity. BMC Infect Dis. 2016;16:180.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dols JAM, Smit PW, Kort R, Reid G, Schuren FHJ, Tempelman H, et al. Microarray-based identification of clinically relevant vaginal bacteria in relation to bacterial vaginosis. Am J Obstet Gynecol. 2011;204(305):e1-7.

    Google Scholar 

  80. Ata B, Yildiz S, Turkgeldi E, Brocal VP, Dinleyici EC, Moya A, et al. The endobiota study: comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Sci Rep. 2019;9:2204.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Khan KN, Fujishita A, Masumoto H, Muto H, Kitajima M, Masuzaki H, et al. Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur J Obstet Gynecol Reprod Biol. 2016;199:69–75.

    Article  CAS  PubMed  Google Scholar 

  82. Wei W, Zhang X, Tang H, Zeng L, Wu R. Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann Clin Microbiol Antimicrob. 2020;19:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muzny CA, Łaniewski P, Schwebke JR, Herbst-Kralovetz MM. Host-vaginal microbiota interactions in the pathogenesis of bacterial vaginosis. Curr Opin Infect Dis. 2020;33:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Turovskiy Y, Sutyak Noll K, Chikindas ML. The aetiology of bacterial vaginosis. J Appl Microbiol. 2011;110:1105–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tai F-W, Chang CY-Y, Chiang J-H, Lin W-C, Wan L. Association of pelvic inflammatory disease with risk of endometriosis: a nationwide cohort study involving 141,460 individuals. J Clin Med. 2018;7:379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Muraoka A, Suzuki M, Hamaguchi T, Watanabe S, Iijima K, Murofushi Y, Shinjo K, Osuka S, Hariyama Y, Ito M, Ohno K, Kiyono T, Kyo S, Iwase A, Kikkawa F, Kajiyama H, Kondo Y. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci Transl Med. 2023;15(700):eadd1531.

    Article  CAS  PubMed  Google Scholar 

  87. Hernandes C, Silveira P, Rodrigues Sereia AF, Christoff AP, Mendes H, Valter de Oliveira LF, et al. Microbiome profile of deep endometriosis patients: comparison of vaginal fluid, endometrium and lesion. Diagnostics (Basel). 2020;10:163.

    Article  CAS  PubMed  Google Scholar 

  88. Tomio K, Kawana K, Taguchi A, Isobe Y, Iwamoto R, Yamashita A, et al. Omega-3 polyunsaturated Fatty acids suppress the cystic lesion formation of peritoneal endometriosis in transgenic mouse models. PLoS ONE. 2013;8: e73085.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Attaman JA, Stanic AK, Kim M, Lynch MP, Rueda BR, Styer AK. The anti-inflammatory impact of omega-3 polyunsaturated Fatty acids during the establishment of endometriosis-like lesions. Am J Reprod Immunol. 2014;72:392–402.

    Article  CAS  PubMed  Google Scholar 

  90. Missmer SA, Chavarro JE, Malspeis S, Bertone-Johnson ER, Hornstein MD, Spiegelman D, et al. A prospective study of dietary fat consumption and endometriosis risk. Hum Reprod. 2010;25:1528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hopeman MM, Riley JK, Frolova AI, Jiang H, Jungheim ES. Serum polyunsaturated fatty acids and endometriosis. Reprod Sci. 2015;22:1083–7.

    Article  CAS  PubMed  Google Scholar 

  92. Yu J-J, Sun H-T, Zhang Z-F, Shi R-X, Liu L-B, Shang W-Q, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction. 2016;152:151–60.

    Article  CAS  PubMed  Google Scholar 

  93. Bailey MT, Coe CL. Endometriosis is associated with an altered profile of intestinal microflora in female rhesus monkeys. Hum Reprod. 2002;17:1704–8.

    Article  PubMed  Google Scholar 

  94. Itoh H, Sashihara T, Hosono A, Kaminogawa S, Uchida M. Lactobacillus gasseri OLL2809 inhibits development of ectopic endometrial cell in peritoneal cavity via activation of NK cells in a murine endometriosis model. Cytotechnology. 2011;63:205–10.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Khodaverdi S, Mohammadbeigi R, Khaledi M, Mesdaghinia L, Sharifzadeh F, Nasiripour S, et al. Beneficial effects of oral Lactobacillus on pain severity in women suffering from endometriosis: a pilot placebo-controlled randomized clinical trial. Int J Fertil Steril. 2019;13:178–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chadchan SB, Cheng M, Parnell LA, Yin Y, Schriefer A, Mysorekar IU, et al. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota. Hum Reprod. 2019;34:1106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Flores R, Shi J, Gail MH, Gajer P, Ravel J, Goedert JJ. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE. 2012;7: e39745.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gloux K, Berteau O, El Oumami H, Béguet F, Leclerc M, Doré J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4539–46.

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Davis AC, Goldberg JM. Extrapelvic Endometriosis. Semin Reprod Med. 2017;35:98–101.

    PubMed  Google Scholar 

  100. Cornillie FJ, Oosterlynck D, Lauweryns JM, Koninckx PR. Deeply infiltrating pelvic endometriosis: histology and clinical significance. Fertil Steril. 1990;53:978–83.

    Article  CAS  PubMed  Google Scholar 

  101. Koninckx PR, Martin DC. Deep endometriosis: a consequence of infiltration or retraction or possibly adenomyosis externa? Fertil Steril. 1992;58:924–8.

    Article  CAS  PubMed  Google Scholar 

  102. Demco L. Review of pain associated with minimal endometriosis. JSLS. 2000;4:5–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Koninckx PR, Ussia A, Keckstein J, Adamyan L, Wattiez A, Martin DC. Prevalence of endometriosis and peritoneal pockets in women with infertility and/or pelvic pain. J Obstet Gynaecol Can. 2021;43:935–42.

    Article  PubMed  Google Scholar 

  104. Galvankar M, Singh N, Modi D. Estrogen is essential but not sufficient to induce endometriosis. J Biosci. 2017;42:251–63.

    Article  CAS  PubMed  Google Scholar 

  105. Chantalat E, Valera M-C, Vaysse C, Noirrit E, Rusidze M, Weyl A, et al. Estrogen receptors and endometriosis. Int J Mol Sci. 2020;21:2815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57:359–83.

    Article  CAS  PubMed  Google Scholar 

  107. Han SJ, Jung SY, Wu S-P, Hawkins SM, Park MJ, Kyo S, et al. Estrogen receptor β modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell. 2015;163:960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Noble LS, Simpson ER, Johns A, Bulun SE. Aromatase expression in endometriosis. J Clin Endocrinol Metab. 1996;81:174–9.

    CAS  PubMed  Google Scholar 

  109. Tamura M, Deb S, Sebastian S, Okamura K, Bulun SE. Estrogen up-regulates cyclooxygenase-2 via estrogen receptor in human uterine microvascular endothelial cells. Fertil Steril. 2004;81:1351–6.

    Article  CAS  PubMed  Google Scholar 

  110. Burns KA, Rodriguez KF, Hewitt SC, Janardhan KS, Young SL, Korach KS. Role of estrogen receptor signaling required for endometriosis-like lesion establishment in a mouse model. Endocrinology. 2012;153:3960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Burns KA, Thomas SY, Hamilton KJ, Young SL, Cook DN, Korach KS. Early endometriosis in females is directed by immune-mediated estrogen receptor α and IL-6 cross-talk. Endocrinology. 2018;159:103–18.

    Article  CAS  PubMed  Google Scholar 

  112. Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet. 2021;397:839–52.

    Article  CAS  PubMed  Google Scholar 

  113. Donnez J, Dolmans M-M. Endometriosis and medical therapy: from progestogens to progesterone resistance to GnRH antagonists: a review. J Clin Med. 2021;10:1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94(Suppl 161):8–16.

    Article  CAS  PubMed  Google Scholar 

  115. Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21:155–73.

    Article  CAS  PubMed  Google Scholar 

  116. Katsuki Y, Takano Y, Futamura Y, Shibutani Y, Aoki D, Udagawa Y, et al. Effects of dienogest, a synthetic steroid, on experimental endometriosis in rats. Eur J Endocrinol. 1998;138:216–26.

    Article  CAS  PubMed  Google Scholar 

  117. Barra F, Scala C, Ferrero S. Current understanding on pharmacokinetics, clinical efficacy and safety of progestins for treating pain associated to endometriosis. Expert Opin Drug Metab Toxicol. 2018;14:399–415.

    Article  CAS  PubMed  Google Scholar 

  118. Minami T, Kosugi K, Suganuma I, Yamanaka K, Kusuki I, Oyama T, et al. Antiproliferative and apoptotic effects of norethisterone on endometriotic stromal cells in vitro. Eur J Obstet Gynecol Reprod Biol. 2013;166:76–80.

    Article  CAS  PubMed  Google Scholar 

  119. Katayama H, Katayama T, Uematsu K, Hiratsuka M, Kiyomura M, Shimizu Y, et al. Effect of dienogest administration on angiogenesis and hemodynamics in a rat endometrial autograft model. Hum Reprod. 2010;25:2851–8.

    Article  CAS  PubMed  Google Scholar 

  120. Pitsos M, Kanakas N. The role of matrix metalloproteinases in the pathogenesis of endometriosis. Reprod Sci. 2009;16:717–26.

    Article  CAS  PubMed  Google Scholar 

  121. Bedaiwy MA, Dahoud W, Skomorovska-Prokvolit Y, Yi L, Liu JH, Falcone T, et al. Abundance and localization of progesterone receptor isoforms in endometrium in women with and without endometriosis and in peritoneal and ovarian endometriotic implants. Reprod Sci. 2015;22:1153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol. 2000;20:3102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marquardt RM, Kim TH, Shin J-H, Jeong J-W. Progesterone and estrogen signaling in the endometrium: what goes wrong in endometriosis? Int J Mol Sci. 2019;20:E3822.

    Article  Google Scholar 

  124. Reis FM, Coutinho LM, Vannuccini S, Batteux F, Chapron C, Petraglia F. Progesterone receptor ligands for the treatment of endometriosis: the mechanisms behind therapeutic success and failure. Hum Reprod Update. 2020;26:565–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wieser F, Vigne J-L, Ryan I, Hornung D, Djalali S, Taylor RN. Sulindac suppresses nuclear factor-kappaB activation and RANTES gene and protein expression in endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 2005;90:6441–7.

    Article  CAS  PubMed  Google Scholar 

  126. Guo S-W, Du Y, Liu X. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum Reprod. 2016;31:1462–74.

    Article  CAS  PubMed  Google Scholar 

  127. Wu Y, Starzinski-Powitz A, Guo S-W. Prolonged stimulation with tumor necrosis factor-alpha induced partial methylation at PR-B promoter in immortalized epithelial-like endometriotic cells. Fertil Steril. 2008;90:234–7.

    Article  PubMed  Google Scholar 

  128. Aghajanova L, Velarde MC, Giudice LC. The progesterone receptor coactivator Hic-5 is involved in the pathophysiology of endometriosis. Endocrinology. 2009;150:3863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Capobianco A, Rovere-Querini P. Endometriosis, a disease of the macrophage. Front Immunol. 2013;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Khan KN, Yamamoto K, Fujishita A, Muto H, Koshiba A, Kuroboshi H, et al. Differential levels of regulatory T cells and T-helper-17 cells in women with early and advanced endometriosis. J Clin Endocrinol Metab. 2019;104:4715–29.

    Article  PubMed  Google Scholar 

  131. Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chuang P-C, Wu M-H, Shoji Y, Tsai S-J. Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. J Pathol. 2009;219:232–41.

    Article  CAS  PubMed  Google Scholar 

  133. Wu J, Xie H, Yao S, Liang Y. Macrophage and nerve interaction in endometriosis. J Neuroinflammation. 2017;14:53.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Morotti M, Vincent K, Brawn J, Zondervan KT, Becker CM. Peripheral changes in endometriosis-associated pain. Hum Reprod Update. 2014;20:717–36.

    Article  PubMed  Google Scholar 

  135. Beste MT, Pfäffle-Doyle N, Prentice EA, Morris SN, Lauffenburger DA, Isaacson KB, Griffith LG. Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. Sci Transl Med. 2014;6(222):222ra16.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Braun DP, Muriana A, Gebel H, Rotman C, Rana N, Dmowski WP. Monocyte-mediated enhancement of endometrial cell proliferation in women with endometriosis. Fertil Steril. 1994;61:78–84.

    Article  CAS  PubMed  Google Scholar 

  137. Slabe N, Meden-Vrtovec H, Verdenik I, Kosir-Pogacnik R, Ihan A. Cytotoxic T-cells in peripheral blood in women with endometriosis. Geburtshilfe Frauenheilkd. 2013;73:1042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bulmer JN, Jones RK, Searle RF. Intraepithelial leukocytes in endometriosis and adenomyosis: comparison of eutopic and ectopic endometrium with normal endometrium. Hum Reprod. 1998;13:2910–5.

    Article  CAS  PubMed  Google Scholar 

  139. Olkowska-Truchanowicz J, Białoszewska A, Zwierzchowska A, Sztokfisz-Ignasiak A, Janiuk I, Dąbrowski F, et al. Peritoneal fluid from patients with ovarian endometriosis displays immunosuppressive potential and stimulates Th2 response. Int J Mol Sci. 2021;22:8134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thiruchelvam U, Wingfield M, O’Farrelly C. Natural killer cells: key players in endometriosis. Am J Reprod Immunol. 2015;74:291–301.

    Article  PubMed  Google Scholar 

  141. Wu MY, Yang JH, Chao KH, Hwang JL, Yang YS, Ho HN. Increase in the expression of killer cell inhibitory receptors on peritoneal natural killer cells in women with endometriosis. Fertil Steril. 2000;74:1187–91.

    Article  CAS  PubMed  Google Scholar 

  142. Maeda N, Izumiya C, Oguri H, Kusume T, Yamamoto Y, Fukaya T. Aberrant expression of intercellular adhesion molecule-1 and killer inhibitory receptors induces immune tolerance in women with pelvic endometriosis. Fertil Steril. 2002;77:679–83.

    Article  PubMed  Google Scholar 

  143. Kang Y-J, Jeung IC, Park A, Park Y-J, Jung H, Kim T-D, et al. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 2014;29:2176–89.

    Article  CAS  PubMed  Google Scholar 

  144. Yang H-L, Zhou W-J, Chang K-K, Mei J, Huang L-Q, Wang M-Y, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 2017;154:815–25.

    Article  CAS  PubMed  Google Scholar 

  145. Fan D, Wang X, Shi Z, Jiang Y, Zheng B, Xu L, et al. Understanding endometriosis from an immunomicroenvironmental perspective. Chin Med J (Engl). 2023;136:1897–909.

    Article  CAS  PubMed  Google Scholar 

  146. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis Nat Rev Dis Primers. 2018;4:9.

    Article  PubMed  Google Scholar 

  147. Maddern J, Grundy L, Castro J, Brierley SM. Pain in endometriosis Front Cell Neurosci. 2020;14: 590823.

    Article  CAS  PubMed  Google Scholar 

  148. Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, et al. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J. 2019;33:11210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tran LVP, Tokushige N, Berbic M, Markham R, Fraser IS. Macrophages and nerve fibres in peritoneal endometriosis. Hum Reprod. 2009;24:835–41.

    Article  CAS  PubMed  Google Scholar 

  150. Ding S, Guo X, Zhu L, Wang J, Li T, Yu Q, et al. Macrophage-derived netrin-1 contributes to endometriosis-associated pain. Annals of Translational Medicine. 2021;9:29–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Asally R, Markham R, Manconi F. The expression and cellular localisation of neurotrophin and neural guidance molecules in peritoneal ectopic lesions. Mol Neurobiol. 2019;56:4013–22.

    Article  CAS  PubMed  Google Scholar 

  152. Greaves E, Temp J, Esnal-Zufiurre A, Mechsner S, Horne AW, Saunders PTK. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol. 2015;185:2286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kwon MJ, Shin HY, Cui Y, Kim H, Thi AHL, Choi JY, et al. CCL2 Mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci. 2015;35:15934–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Arnold J, Vercellino GF, Chiantera V, Schneider A, Mechsner S, Barcena de Arellano ML. Neuroimmunomodulatory alterations in non-lesional peritoneum close to peritoneal endometriosis. Neuroimmunomodulation. 2013;20:9–18.

    Article  CAS  PubMed  Google Scholar 

  155. Scheerer C, Frangini S, Chiantera V, Mechsner S. Reduced sympathetic innervation in endometriosis is associated to semaphorin 3C and 3F expression. Mol Neurobiol. 2017;54:5131–41.

    Article  CAS  PubMed  Google Scholar 

  156. Damo E, Simonetti M. Axon guidance molecules and pain Cells. 2022;11:3143.

    CAS  PubMed  Google Scholar 

  157. McKinnon BD, Bertschi D, Bersinger NA, Mueller MD. Inflammation and nerve fiber interaction in endometriotic pain. Trends Endocrinol Metab. 2015;26:1–10.

    Article  CAS  PubMed  Google Scholar 

  158. Zhu H, Wang Y, He Y, Yu W. Inflammation-mediated macrophage polarization induces TRPV1/TRPA1 heteromers in endometriosis. Am J Transl Res. 2022;14:3066–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Tokushige N, Markham R, Russell P, Fraser IS. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21:3001–7.

    Article  CAS  PubMed  Google Scholar 

  160. • Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Veri WA, Rogers MS. Nociceptor to macrophage communication through CGRP/RAMP1 signalling draves endometriosis-associated pain and lesion growth. bioRxiv 2023.08.28.555101; 2023. This article is a preprint and has not been certified by peer review.

  161. Nnoaham KE, Hummelshoj L, Webster P, d’Hooghe T, de Cicco NF, de Cicco NC, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96:366-373.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tanaka Y, Mori T, Ito F, Koshiba A, Takaoka O, Kataoka H, et al. Exacerbation of endometriosis due to regulatory T-cell dysfunction. J Clin Endocrinol Metab. 2017;102:3206–17.

    Article  PubMed  Google Scholar 

  163. Pashizeh F, Mansouri R, Davari-Tanha F, Hosseini R, Asgari Z, Aghaei H, et al. Alterations of CD4+T cell subsets in blood and peritoneal fluid in different stages of endometriosis. Int J Fertil Steril. 2020;14:201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Delbandi A-A, Mahmoudi M, Shervin A, Moradi Z, Arablou T, Zarnani A-H. Higher frequency of circulating, but not tissue regulatory T cells in patients with endometriosis. J Reprod Immunol. 2020;139: 103119.

    Article  CAS  PubMed  Google Scholar 

  165. Gogacz M, Winkler I, Bojarska-Junak A, Tabarkiewicz J, Semczuk A, Rechberger T, et al. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J Reprod Immunol. 2016;117:39–44.

    Article  CAS  PubMed  Google Scholar 

  166. • Guo M, Bafligil C, Tapmeier T, Hubbard C, Manek S, Shang C, et al. Mass cytometry analysis reveals a distinct immune environment in peritoneal fluid in endometriosis: a characterisation study. BMC Med. 2020;18:3. This study is notable because it utilized recently developed multiparameter single-cell mass spectrometry technique (CyTOF) to characterize peritoneal fluid and peripheral blood immune cells from endometriosis patients, finding more than 40 different distinct cell types.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zeng X, Zhang Z, Gao Q-Q, Wang Y-Y, Yu X-Z, Zhou B, et al. Clinical significance of serum interleukin-31 and interleukin-33 levels in patients of endometrial cancer: a case control study. Dis Markers. 2016;2016:9262919.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gruber TM, Mechsner S. Pathogenesis of endometriosis: the origin of pain and subfertility. Cells. 2021;10:1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Buyalos RP, Funari VA, Azziz R, Watson JM, Martinez-Maza O. Elevated interleukin-6 levels in peritoneal fluid of patients with pelvic pathology. Fertil Steril. 1992;58:302–6.

    Article  CAS  PubMed  Google Scholar 

  170. Koyama N, Matsuura K, Okamura H. Cytokines in the peritoneal fluid of patients with endometriosis. Int J Gynaecol Obstet. 1993;43:45–50.

    Article  CAS  PubMed  Google Scholar 

  171. Rier SE, Zarmakoupis PN, Hu X, Becker JL. Dysregulation of interleukin-6 responses in ectopic endometrial stromal cells: correlation with decreased soluble receptor levels in peritoneal fluid of women with endometriosis. J Clin Endocrinol Metab. 1995;80:1431–7.

    CAS  PubMed  Google Scholar 

  172. Mosbah A, Nabiel Y, Khashaba E. Interleukin-6, intracellular adhesion molecule-1, and glycodelin A levels in serum and peritoneal fluid as biomarkers for endometriosis. Int J Gynaecol Obstet. 2016;134:247–51.

    Article  CAS  PubMed  Google Scholar 

  173. Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A, Bednarek I, Kondera-Anasz Z. The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol Lett. 2018;201:31–7.

    Article  CAS  PubMed  Google Scholar 

  174. Bungum HF, Nygaard U, Vestergaard C, Martensen PM, Knudsen UB. Increased IL-25 levels in the peritoneal fluid of patients with endometriosis. J Reprod Immunol. 2016;114:6–9.

    Article  CAS  PubMed  Google Scholar 

  175. Miller JE, Ahn SH, Marks RM, Monsanto SP, Fazleabas AT, Koti M, et al. IL-17A modulates peritoneal macrophage recruitment and M2 polarization in endometriosis. Front Immunol. 2020;11:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chang K-K, Liu L-B, Jin L-P, Zhang B, Mei J, Li H, et al. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis. 2017;8: e2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Young VJ, Ahmad SF, Duncan WC, Horne AW. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update. 2017;23:548–59.

    Article  CAS  PubMed  Google Scholar 

  178. Zhang X, Xu H, Lin J, Qian Y, Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG. 2005;112:1153–5.

    Article  PubMed  Google Scholar 

  179. Fernández-Shaw S, Hicks BR, Yudkin PL, Kennedy S, Barlow DH, Starkey PM. Anti-endometrial and anti-endothelial auto-antibodies in women with endometriosis. Hum Reprod. 1993;8:310–5.

    Article  PubMed  Google Scholar 

  180. Choudhury SR, Knapp LA. Human reproductive failure I: immunological factors. Hum Reprod Update. 2001;7:113–34.

    Article  CAS  PubMed  Google Scholar 

  181. Palacio JR, Iborra A, Ulcova-Gallova Z, Badia R, Martínez P. The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients. Clin Exp Immunol. 2006;144:217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sarapik A, Haller-Kikkatalo K, Utt M, Teesalu K, Salumets A, Uibo R. Serum anti-endometrial antibodies in infertile women - potential risk factor for implantation failure. Am J Reprod Immunol. 2010;63:349–57.

    Article  CAS  PubMed  Google Scholar 

  183. Gajbhiye R, Suryawanshi A, Khan S, Meherji P, Warty N, Raut V, et al. Multiple endometrial antigens are targeted in autoimmune endometriosis. Reprod Biomed Online. 2008;16:817–24.

    Article  CAS  PubMed  Google Scholar 

  184. Bendigeri T, Ghuge A, Bhusane K, Begum S, Warty N, Sawant R, et al. Stage-wise comparison of anti-endometrial-antibodies against peptides of SLP2, TMOD3 and TPM3 in diagnosis of endometriosis. Fertil Steril. 2015;104:e162.

    Article  Google Scholar 

  185. Nabeta M, Abe Y, Haraguchi R, Kito K, Kusanagi Y, Ito M. Serum anti-PDIK1L autoantibody as a novel marker for endometriosis. Fertil Steril. 2010;94:2552-2557.e1.

    Article  CAS  PubMed  Google Scholar 

  186. Nabeta M, Abe Y, Kagawa L, Haraguchi R, Kito K, Ueda N, et al. Identification of anti-α-enolase autoantibody as a novel serum marker for endometriosis. Proteomics Clin Appl. 2009;3:1201–10.

    Article  CAS  PubMed  Google Scholar 

  187. Barrier BF, Bates GW, Leland MM, Leach DA, Robinson RD, Propst AM. Efficacy of anti-tumor necrosis factor therapy in the treatment of spontaneous endometriosis in baboons. Fertil Steril. 2004;81(Suppl 1):775–9.

    Article  CAS  PubMed  Google Scholar 

  188. Koninckx PR, Craessaerts M, Timmerman D, Cornillie F, Kennedy S. Anti-TNF-alpha treatment for deep endometriosis-associated pain: a randomized placebo-controlled trial. Hum Reprod. 2008;23:2017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. • Nishimoto-Kakiuchi A, Sato I, Nakano K, Ohmori H, Kayukawa Y, Tanimura H, Yamamoto S, Sakamoto Y, Nakamura G, Maeda A, Asanuma K, Kato A, Sankai T, Konno R, Yamada-Okabe H. A long-acting anti-IL-8 antibody improves inflammation and fibrosis in endometriosis. Sci Transl Med. 2023;15(684):eabq5858. This group is notable because they developed a long-acting recycling antibody against IL-8 (AMY109) that shows promise as a long-term disease-modifying therapy for endometriosis in primate studies.

  190. Melioli G, Semino C, Semino A, Venturini PL, Ragni N. Recombinant interleukin-2 corrects in vitro the immunological defect of endometriosis. Am J Reprod Immunol. 1993;30:218–27.

    Article  CAS  PubMed  Google Scholar 

  191. Prentice S, Nassanga B, Webb EL, Akello F, Kiwudhu F, Akurut H, et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomised controlled trial. Lancet Infect Dis. 2021;21:993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. van Puffelen JH, Keating ST, Oosterwijk E, van der Heijden AG, Netea MG, Joosten LAB, et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat Rev Urol. 2020;17:513–25.

    Article  PubMed  Google Scholar 

  193. Klein BY. Newborn BCG vaccination complemented by boosting correlates better with reduced juvenile diabetes in females, than vaccination alone. Vaccine. 2020;38:6427–34.

    Article  CAS  PubMed  Google Scholar 

  194. Hecht J, Suliman S, Wegiel B. Bacillus Calmette-Guerin (BCG) vaccination to treat endometriosis. Vaccine. 2021;39:7353–6.

    Article  CAS  PubMed  Google Scholar 

  195. Gül A, Yaşar T, Uğraş S. BCG vaccination to prevent implantation of endometriosis: an experimental study in rats. Eur J Obstet Gynecol Reprod Biol. 2001;98:209–12.

    Article  PubMed  Google Scholar 

  196. Itil IM, Cirpan T, Akercan F, Gamaa A, Kazandi M, Kazandi AC, et al. Effect of BCG vaccine on peritoneal endometriotic implants in a rat model of endometriosis. Aust N Z J Obstet Gynaecol. 2006;46:38–41.

    Article  PubMed  Google Scholar 

  197. Daniels S, Robbins J, West CR, Nemeth MA. Celecoxib in the treatment of primary dysmenorrhea: results from two randomized, double-blind, active- and placebo-controlled, crossover studies. Clin Ther. 2009;31:1192–208.

    Article  CAS  PubMed  Google Scholar 

  198. Takayama K, Zeitoun K, Gunby RT, Sasano H, Carr BR, Bulun SE. Treatment of severe postmenopausal endometriosis with an aromatase inhibitor. Fertil Steril. 1998;69:709–13.

    Article  CAS  PubMed  Google Scholar 

  199. Attar E, Bulun SE. Aromatase inhibitors: the next generation of therapeutics for endometriosis? Fertil Steril. 2006;85:1307–18.

    Article  CAS  PubMed  Google Scholar 

  200. Soysal S, Soysal ME, Ozer S, Gul N, Gezgin T. The effects of post-surgical administration of goserelin plus anastrozole compared to goserelin alone in patients with severe endometriosis: a prospective randomized trial. Hum Reprod. 2004;19:160–7.

    Article  PubMed  Google Scholar 

  201. Harris HA, Bruner-Tran KL, Zhang X, Osteen KG, Lyttle CR. A selective estrogen receptor-beta agonist causes lesion regression in an experimentally induced model of endometriosis. Hum Reprod. 2005;20:936–41.

    Article  CAS  PubMed  Google Scholar 

  202. Zhao Y, Gong P, Chen Y, Nwachukwu JC, Srinivasan S, Ko C, Bagchi MK, Taylor RN, Korach KS, Nettles KW, Katzenellenbogen JA, Katzenellenbogen BS. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med. 2015;271(7):271ra9.

    Google Scholar 

Download references

Funding

Dr. Michael Rogers declares the following sources of funding: grants or contracts from the NIH (1R01HD110922-01, 1R21HD109491-01, 1R21CA274098-01, 1R01EY033354-01A1, R01EY012726-01), Marriott Daughters Foundation, and JW and Alice Marriott Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. and P.M. wrote the main manuscript, and L.K., M.R., and M.H. provided editorial support.

Corresponding author

Correspondence to Alexandria N. Young.

Ethics declarations

Competing interests

Dr. Michael Rogers declares the following conflicts of interest: grants or contracts from MediBioFarma, Cygnal Therapeutics, Gliknik Therapeutics, Nocion Therapeutics, and Alnylam Therapeutics; honoraria and/or meeting support from the Center for Cancer Biomarkers (University of Bergen, Norway), Brigham Young University, University of Rochester Medical Center, and Cygnal Therapeutics; and patents from the Boston Children’s Hospital. Dr. Mark Hornstein declares the following conflicts of interest: royalties or licenses from UpToDate, participation in Data Safety Monitoring or Advisory Board from WINFertility and Intelon Optics, and stock options from Intelon Optics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, A.N., Maghsoudlou, P., King, L.P. et al. Immunologic Aspects of Endometriosis. Curr Obstet Gynecol Rep 13, 24–36 (2024). https://doi.org/10.1007/s13669-024-00373-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13669-024-00373-2

Keywords

Navigation