Skip to main content
Log in

Comparison of data processing algorithm performance for optical and conductivity void probes

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

In commercial nuclear reactors, heat exchangers, and bubble column reactors, two-phase flows are present. When predicting the safety and process efficiency of these systems, it is necessary to model the behavior found in them. The most common model used in two-phase flows is the two-fluid model due to its practicality. In the two-fluid model, two key parameters are the void fraction (VF, also known as the gas fraction or gas holdup) and interfacial area concentration (IAC, also known as interfacial area density). In order to produce accurate results, the bubbles are separated into groups based on the transport properties. When benchmarking models, experimental data are required. In many cases the experimental data are produced with the use of intrusive conductivity or optical probes. Recently a new data processing algorithm was developed to improve bubble interface identification and implement a method to group bubbles based on diameter rather than chord length. In this paper, the new data processing algorithm is evaluated by comparing the results when using both conductivity and optical probes. At a data acquisition frequency of 22 kHz, the optical probe collected more bubbles than the conductivity probe using the old algorithm. The new algorithm results in similar bubble counts for both instruments. There is a shift in bubbles from Group 1 to Group 2 in both the optical and conductivity probes. The new bubble size calculation means that several bubbles, which were previously classified as “spherical/distorted”, are now classified as “cap/slug/churn” bubbles for both the optical and conductivity probes. However due to low sample rates used in this research, the IAC is larger for the conductivity probe when compared to the optical probe by 10% to 60%. While some of these changes were expected, the increase in the IAC was larger than the reported uncertainty of the instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Abuaf, N., Jones, O. C. Jr., Zimmer, G. A. 1978. Optical probe for local void fraction and interface velocity measurements. Office of Scientific and Technical Information.

    Book  Google Scholar 

  • Danel, F., Delhaye, J. M. 1971. Sonde optique pour mesure du taux de présence local en écoulement diphasique. Mesure-Regulation-Automatisme, 36: 99–101.

    Google Scholar 

  • Farag, H. I., Mejdell, T., Hjarbo, K., Ege, P., Lysberg, M., Grislingas, A., de Lasa, H. 1997. Fibre optic and capacitance probes in turbulent fluidized beds. Chem Eng Commun, 157: 73–107.

    Article  Google Scholar 

  • Frijlink, J. J. 1987. Physical aspects of gassed suspension reactors. Ph.D. Thesis. Delft University of Technology, Netherlands.

    Google Scholar 

  • Galaup, J. P., Delhaye, J. M. 1976. Utilization of the miniaturized optical probes for void fraction and gas velocity measurements in two-phase flow. La Houille Blanche, 1: 17–30.

    Article  Google Scholar 

  • Ishii, M. 1975. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Paris: Eyrolles.

    MATH  Google Scholar 

  • Ishii, M., Kim, S. 2001. Micro four-sensor probe measurement of interfacial area transport for bubbly flow in round pipes. Nucl Eng Des, 205: 123–131.

    Article  Google Scholar 

  • Ishii, M., Kim, S., Uhle, J. 2002. Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transfer, 45: 3111–3123.

    Article  Google Scholar 

  • Ishii, M., Revankar, S. T. 1991. Measurement of interfacial area using four sensor probe in two phase flow. NASA STI/Recon Technical Report N, 91.

    Google Scholar 

  • Kataoka, I., Ishii, M., Serizawa, A. 1994. Sensitivity analysis of bubble size and probe geometry on the measurements of interfacial area concentration in gas-liquid two-phase flow. Nucl Eng Des, 146: 53–70.

    Article  Google Scholar 

  • Kim, S. 1999. Interfacial area transport equation and measurement of local interfacial characteristics. Ph.D. Thesis. Purdue University.

    Google Scholar 

  • Kim, S., Fu, X. Y., Wang, X., Ishii, M. 2001. Study on interfacial structures in slug flows using a miniaturized four-sensor conductivity probe. Nucl Eng Des, 204: 45–55.

    Article  Google Scholar 

  • Miller, N., Mitchie, R. E. 1969. The development of a universal probe for measurement of local voidage in liquid-gas two-phase flow systems. Two-Phase Flow Instrumentation, 82–88.

    Google Scholar 

  • Miller, N., Mitchie, R. E. 1970. Measurement of local voidage in liquid/gas two phase flow systems using a universal probe. J Brit Nucl Energy Soc, 9: 94–100.

    Google Scholar 

  • Mills, C. S. L., Schlegel, J. P. 2019. Interfacial area measurement with new algorithm for grouping bubbles by diameter. Exp Comput Multiph Flow, 1: 61–72.

    Article  Google Scholar 

  • Neal, L. G., Bankoff, S. G. 1963. A high resolution resistivity probe for determination of local void properties in gas-liquid flow. AIChE J, 9: 490–494.

    Article  Google Scholar 

  • Talley, J. D., Worosz, T., Kim, S. 2015. Characterization of horizontal air-water two-phase flow in a round pipe part II: Measurement of local two-phase parameters in bubbly flow. Int J Multiphase Flow, 76: 223–236.

    Article  Google Scholar 

  • Tian, D. G., Yan, C. Q., Sun, L. C. 2015. Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe. Prog Nucl Energ, 78: 110–120.

    Article  Google Scholar 

  • Xue, J. L., Al-Dahhan, M., Dudukovic, M. P., Mudde, R. F. 2008. Bubble dynamics measurements using four-point optical probe. Can J Chem Eng, 81: 375–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Schlegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, C., Schlegel, J.P. Comparison of data processing algorithm performance for optical and conductivity void probes. Exp. Comput. Multiph. Flow 2, 174–185 (2020). https://doi.org/10.1007/s42757-019-0017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0017-y

Keywords

Navigation