Advertisement

Visualization and measurement of two-phase flows in horizontal pipelines

  • Paolo SassiEmail author
  • Jordi Pallarès
  • Youssef Stiriba
Research Article

Abstract

Understanding the dynamics of gas-liquid two-phase flows (G/L), is crucial to predict the transport efficiency of the mixture and the energy needed for pumping. In addition, many industrial processes are governed by momentum, heat, and mass transfer phenomena between the phases. Many examples can be found in the different stages of refinement up to the production of petroleum products, biomass transport, chemical reactors, nuclear waste decommissioning, pulp, and paper production, among many others.

In this study, an experimental facility designed to analyze G/L mixture is presented and discussed. The experimental results are presented for gas-liquid flows in horizontal 30 mm ID pipelines. The mixture involved is composed of air and water. The superficial velocity of the liquid phase is in the range of 0–2 m/s and the gas phase from 0 to 2 m/s.

The experimental data accounts for pressure loss, hold-up, superficial velocities, and flow regimes. A flow map is presented covering the specified ranges, and two-phase correlations for hold-up and frictional pressure loss are reported and compared with the available experimental data.

Keywords

two-phase flows experimental analysis frictional pressure drop void fraction 

Notes

Aknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 713679; from the Spanish government under the grant DPI2016-75791-C2-1-P; and from Generalitat de Catalunya under grant 2017-SGR-01234. These supports are gratefully acknowledged. We also appreciate the great help of the lab technician, Jordi Iglesias.

References

  1. Abduvayt, P., Arihara, N., Manabe, R., Ikeda, K. 2003. Experimental and modeling studies for gas-liquid two-phase flow at high pressure conditions. J Jpn Petrol Inst, 46: 111–125.CrossRefGoogle Scholar
  2. Beggs, D. H., Brill, J. P. 1973. A study of two-phase flow in inclined pipes. J Petrol Technol, 25: 607–617.CrossRefGoogle Scholar
  3. Bhagwat, S. M., Ghajar, A. J. 2014. A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two phase flow. Int J Multiphase Flow, 59: 186–205.CrossRefGoogle Scholar
  4. Chisholm, D. 1967. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int J Heat Mass Tran, 10: 1767–1778.CrossRefGoogle Scholar
  5. Choi, J., Pereyra, E., Sarica, C., Park, C., Kang, J. 2012. An efficient drift-flux closure relationship to estimate liquid holdups of gas-liquid two-phase flow in pipes. Energies, 5: 5294–5306.CrossRefGoogle Scholar
  6. Dukler, A. E., Wicks, M., Cleveland, R. G. 1964. Frictional pressure drop in two-phase flow: B. An approach through similarity analysis. AIChE J, 10: 44–51.CrossRefGoogle Scholar
  7. Gomez, L. E., Shoham, O., Schmidt, Z., Chokshi, R. N., Northug, T. 2000. Unified mechanistic model for steady-state two-phase flow: Horizontal to vertical upward flow. SPE J, 5: 339–350.CrossRefGoogle Scholar
  8. Hibiki, T., Ishii, M. 2003. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int J Heat Mass Tran, 46: 4935–4948.CrossRefzbMATHGoogle Scholar
  9. Kong, R., Kim, S., Bajorek, S., Tien, K., Hoxie, C. 2017. Experimental investigation of horizontal air-water bubbly-to-plug and bubblyto-slug transition flows in a 3.81 cm ID pipe. Int J Multiphase Flow, 94: 137–155.CrossRefGoogle Scholar
  10. Kong, R., Kim, S., Bajorek, S., Tien, K., Hoxie, C. 2018. Effects of pipe size on horizontal two-phase flow: Flow regimes, pressure drop, two-phase flow parameters, and drift-flux analysis. Exp Therm Fluid Sci, 96: 75–89.CrossRefGoogle Scholar
  11. Lockhart, R. W., Martinelli, R. C. 1949. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog, 45: 39–48.Google Scholar
  12. Mandhane, J. M., Gregory, G. A., Aziz, K. 1974. A flow pattern map for gas-liquid flow in horizontal pipes. Int J Multiphase Flow, 1: 537–553.CrossRefGoogle Scholar
  13. Mao, F., Desir, F. K., Ebadian, M. A. 1997. Pressure drop measurement and correlation for three-phase flow of simulated nuclear waste in a horizontal pipe. Int J Multiphase Flow, 23: 397–402.CrossRefGoogle Scholar
  14. Rahman, M. A., Adane, K. F., Sanders, R. S. 2013. An improved method for applying the Lockhart-Martinelli correlation to three-phase gas-liquid-solid horizontal pipeline flows. Can J Chem Eng, 91: 1372–1382.CrossRefGoogle Scholar
  15. Taitel, Y., Dukler, A. E. 1976. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J, 22: 47–55.CrossRefGoogle Scholar
  16. Talley, J. D., Worosz, T., Kim, S. 2015. Characterization of horizontal air-water two-phase flow in a round pipe part II: Measurement of local two-phase parameters in bubbly flow. Int J Multiphase Flow, 76: 223–236.CrossRefGoogle Scholar
  17. Vijayan, P. K., Patil, A. P., Pilkhwal, D. S., Saha, D., Venkat Raj, V. 2000. An assessment of pressure drop and void fraction correlations with data from two-phase natural circulation loops. Heat Mass Transfer, 36: 541–548.CrossRefGoogle Scholar
  18. Zuber, N., Findlay, J. A. 1965. Average volumetric concentration in two-phase flow systems. J Heat Transf, 87: 453–468.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.Departament d’Enginyeria MecànicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations