Skip to main content
Log in

A coupled immersed interface and level set method for simulation of interfacial flows steered by surface tension

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

This work presents a methodology to address the problems of bubbles and drops evolving in incompressible, viscous flows due to the effect of surface tension. It is based on the combination of a recently developed immersed interface method to resolve discontinuities, with the level set (LS) method to reproduce the evolving interfaces. The paramount feature of this immersed interface method is the use of Lagrange interpolation enclosing grid points positioned in the vicinity of the interface and few exceptional grid points positioned on the interface. Different problems are considered to assert the accurateness of the proposed methodology, involving both simple and complex interface geometries. Precisely, the following problems are addressed: circular flow with a fixed interface, the dispersion of capillary waves, initially circular, ellipse, star shaped bubbles oscillating to an equilibrium state, and circular drops deforming in shear flows. The transient evolution of bubbles/drops in terms of their shapes, pressure profiles, velocity vectors, deformation ratios of major and minor axis is analyzed to observe the effect of surface tension. The proposed methodology is seen to recover the exact numerical equilibrium between the surface tension and pressure gradient in the vicinity of complex interface geometries as well, while recreating the flow physics with an adequate level of accuracy with well representation of overall trends. Moreover, the numerical results yield a good level of agreement with the reference data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Anderson, D. A., Tannehil, J. C., Pletcher, R. H. 1984. Computational Fluid mechanics and Heat Transfer. New York: Hemisphere Publishing Corporation.

    Google Scholar 

  • Balcázar Arciniega, N. 2014. Numerical simulation of multiphase flows: Level-set techniques. Doctoral Thesis. UPC, Departament de Màquines i Motors Tèrmics. Available at https://hdl.handle.net/2117/95470.

  • Balcázar, N., Lehmkuhl, O., Jofre, L., Rigola, J., Oliva, A. 2016. A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes. Comput Fluids, 124: 12–29.

    MathSciNet  MATH  Google Scholar 

  • Chakraborty, I., Biswas, G., Ghoshdastidar, P. S. 2013. A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int J Heat Mass Tran, 58: 240–259.

    Google Scholar 

  • Chang, Y. C., Hou, T. Y., Merriman, B., Osher, S. 1996. A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys, 124: 449–464.

    MathSciNet  MATH  Google Scholar 

  • Chorin, A. J. 1967. A numerical method for solving incompressible viscous flow problems. J Comput Phys, 2: 12–26.

    MathSciNet  MATH  Google Scholar 

  • Connington, K., Lee, T. 2012. A review of spurious currents in the lattice Boltzmann method for multiphase flows. J Mech Sci Tech, 26: 3857–3863.

    Google Scholar 

  • Denner, F., Evrard, F., Serfaty, R., van Wachem, B. G. M. 2017. Artificial viscosity model to mitigate numerical artefacts at fluid interfaces with surface tension. Comput Fluids, 143: 59–72.

    MathSciNet  MATH  Google Scholar 

  • Farokhirad, S., Lee, T., Morris, J. F. 2013. Effects of inertia and viscosity on single droplet deformation in confined shear flow. Commun Comput Phys, 13: 706–724.

    MATH  Google Scholar 

  • Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M., Williams, M. W. 2006. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J Comput Phys, 213: 141–173.

    MATH  Google Scholar 

  • Francois, M., Shyy, W. 2003. Computations of drop dynamics with the immersed boundary method, part 1: Numerical algorithm and buoyancy-induced effect. Numer Heat Tr B: Fund, 44: 101–118.

    Google Scholar 

  • Ge, Z., Loiseau, J. C., Tammisola, O., Brandt, L. 2018. An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces. J Comput Phys, 353: 435–459.

    MathSciNet  MATH  Google Scholar 

  • Greenspan, H. P. 1977a. On the deformation of a viscous droplet caused by variable surface tension. Stud Appl Math, 57: 45–58.

    MathSciNet  MATH  Google Scholar 

  • Greenspan, H. P. 1977b. On the dynamics of cell cleavage. J Theor Biol, 65: 79–99.

    Google Scholar 

  • Gutiérrez, E., Favre, F., Balcázar, N., Amani, A., Rigola, J. 2018. Numerical approach to study bubbles and drops evolving through complex geometries by using a level set-moving mesh-immersed boundary method. Chem Eng J, 349: 662–682.

    Google Scholar 

  • Huang, J., Huang, H., Wang, S. 2015. Phase-field-based simulation of axisymmetric binary fluids by using vorticity-streamfunction formulation. Prog Comput Fluid Dy, 15: 352–371.

    MathSciNet  MATH  Google Scholar 

  • Hysing, S. 2012. Mixed element FEM level set method for numerical simulation of immiscible fluids. J Comput Phys, 231: 2449–2465.

    MathSciNet  MATH  Google Scholar 

  • Ketterl, S., Reißmann, M., Klein, M. 2019. Large eddy simulation of multiphase flows using the volume of fluid method: Part 2—A-posteriori analysis of liquid jet atomization. Exp Comput Multiphase Flow, 1: 201–211.

    Google Scholar 

  • Klein, M., Ketterl, S., Hasslberger, J. 2019. Large eddy simulation of multiphase flows using the volume of fluid method: Part 1—Governing equations and a priori analysis. Exp Comput Multiphase Flow, 1: 130–144.

    Google Scholar 

  • LeVeque, R. J., Li, Z. 1997. Immersed interface methods for stokes flow with elastic boundaries or surface tension. SIAM J Sci Comput, 18: 709–735.

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Ito, K., Lai, M. C. 2007. An augmented approach for Stokes equations with a discontinuous viscosity and singular forces. Comput Fluids, 36: 622–635.

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Lai, M. C. 2001. The immersed interface method for the Navier-Stokes equations with singular forces. J Comput Phys, 171: 822–842.

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Lubkin, S. R. 2001. Numerical analysis of interfacial two-dimensional Stokes flow with discontinuous viscosity and variable surface tension. Int J Numer M Fl, 37: 525–540.

    MathSciNet  MATH  Google Scholar 

  • Mier-Torrecilla, M. D., Idelsohn, S. R., Oñate, E. 2011. Advances in the simulation of multi-fluid flows with the particle finite element method. Application to bubble dynamics. Int J Numer M Fl, 67: 1516–1539.

    MathSciNet  MATH  Google Scholar 

  • Mittal, H. V. R. 2016. A class of higher order accurate schemes for fluid interface problems. Doctoral Thesis. Indian Institute of Technology, Mandi, India.

    Google Scholar 

  • Mittal, H. V. R., Al-Mdallal, Q. M. 2018. A numerical study of forced convection from an isothermal cylinder performing rotational oscillations in a uniform stream. Int J Heat Mass Tran, 127: 357–374.

    Google Scholar 

  • Mittal, H. V. R., Al-Mdallal, Q. M., Ray, R. K. 2017b. Locked-on vortex shedding modes from a rotationally oscillating circular cylinder. Ocean Eng, 146: 324–338.

    Google Scholar 

  • Mittal, H. V. R., Kalita, J. C., Ray, R. K. 2016. A class of finite difference schemes for interface problems with an HOC approach. Int J Numer M Fl, 82: 567–606.

    MathSciNet  Google Scholar 

  • Mittal, H. V. R., Ray, R. K. 2018. Solving immersed interface problems using a new interfacial points-based finite difference approach. SIAM J Sci Comput, 40: A1860–A1883.

    MathSciNet  MATH  Google Scholar 

  • Mittal, H. V. R., Ray, R. K., Al-Mdallal, Q. M. 2017a. A numerical study of initial flow past an impulsively started rotationally oscillating circular cylinder using a transformation-free HOC scheme. Phys Fluids, 29: 093603.

    Google Scholar 

  • Osher, S., Fedkiw, R. 2006. Level Set Methods and Dynamic Implicit Surfaces (Vol. 153). Springer Science & Business Media.

  • Osher, S., Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys, 79: 12–49.

    MathSciNet  MATH  Google Scholar 

  • Peskin, C. S. 1977. Numerical analysis of blood flow in the heart. J Comput Phys, 25: 220–252.

    MathSciNet  MATH  Google Scholar 

  • Popinet, S. 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys, 228: 5838–5866.

    MathSciNet  MATH  Google Scholar 

  • Prosperetti, A. 1981. Motion of two superposed viscous fluids. Phys Fluids, 24: 1217–1223.

    MathSciNet  MATH  Google Scholar 

  • Raessi, M., Mostaghimi, J., Bussmann, M. 2010. A volume-of-fluid interfacial flow solver with advected normals. Comput Fluids, 39: 1401–1410.

    MathSciNet  MATH  Google Scholar 

  • Scardovelli, R., Zaleski, S. 1999. Direct numerical simulation of free-surface and interfacial flow. Ann Rev Fluid Mech, 31: 567–603.

    MathSciNet  Google Scholar 

  • Sheth, K. S., Pozrikidis, C. 1995. Effects of inertia on the deformation of liquid drops in simple shear flow. Comput Fluids, 24: 101–119.

    MATH  Google Scholar 

  • Stone, H. A., Stroock, A. D., Ajdari, A. 2004. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech, 36: 381–411.

    MATH  Google Scholar 

  • Sussman, M., Smereka, P., Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys, 114: 146–159.

    MATH  Google Scholar 

  • Tan, Z., Le, D. V., Li, Z., Lim, K. M., Khoo, B. C. 2008. An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane. J Comput Phys, 227: 9955–9983.

    MathSciNet  MATH  Google Scholar 

  • Tong, A. Y., Wang, Z. 2007. A numerical method for capillarity-dominant free surface flows. J Comput Phys, 221: 506–523.

    MATH  Google Scholar 

  • Uh, M., Xu, S. 2012. The immersed interface method for two-fluid problems. Available at https://scholar.smu.edu/cgi/viewcontent.cgi?article=1004&context=hum_sci_mathematics_research.

  • Unverdi, S. O., Tryggvason, G. 1992. A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys, 100: 25–37.

    MATH  Google Scholar 

  • Xu, S., Wang, Z. J. 2006. An immersed interface method for simulating the interaction of a fluid with moving boundaries. J Comput Phys, 216: 454–493.

    MathSciNet  MATH  Google Scholar 

  • Yuan, H. Z., Shu, C., Wang, Y., Shu, S. 2018. A simple mass-conserved level set method for simulation of multiphase flows. Phys Fluids, 30: 040908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. R. Mittal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, H.V.R., Ray, R.K., Gadêlha, H. et al. A coupled immersed interface and level set method for simulation of interfacial flows steered by surface tension. Exp. Comput. Multiph. Flow 3, 21–37 (2021). https://doi.org/10.1007/s42757-019-0050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0050-x

Keywords

Navigation