Skip to main content
Log in

A technical review of research progress on thin liquid film thickness measurement

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

The thickness of the thin liquid film and its effects have always been a research hotspot in nuclear power applications and operating nuclear power plants, because the flow phenomenon of the liquid film is extremely common in multiphase flow research. Based on papers published in recent years, novel research progress on thin film thickness is reviewed from the following two perspectives: the experimental measurement and the theoretical model of liquid film thickness. For the experimental measurement, methods mainly include the PLIF method, the capacitance method, and the ultrasonic method. The following contents in this part are mainly reviewed from the PLIF method, the capacitance method, the ultrasonic method, and other methods for the measurement of the liquid film thickness on the wall, the liquid film thickness on the tube wall, and other aspects of the liquid film thickness. For the model, the theoretical model of liquid film thickness on the wall is mainly reviewed from two aspects: vertical flow and horizontal flow. Other models are mainly reviewed from the following aspects. They are annular film thickness, liquid film thickness for gas–liquid annular flow, and film thickness in pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

Abbreviations

Ar :

Archimedes number

Bo :

Bond number based on the bubble acceleration

C :

Capacitance between two parallel conductive plates

Ca :

Capillary number

Ca**:

Criterion for the limit in capillary number

D :

Outside diameter of tube

D i :

Tube inner diameter

Fr G :

Froude number for gas phase

h :

Liquid film thickness

I t :

Sum of the reflected light intensity

I 0 :

Incident intensity

k :

Spectral absorption coefficient

n 1 :

Refractive indexes of air absorption medium

n 2 :

Refractive indexes of liquid absorption medium

R :

Reflectivity on the liquid-gas interface

Re :

Liquid film Reynolds number

Q :

Liquid feeding rate

S :

Intertube spacing

v*:

Dimensionless slip velocity

We :

Weber number

We L :

Weber number for liquid phase

We G :

Weber number for gas phase

α :

Modification coefficient

μ :

Dynamic viscosity

θ :

Incident angle

β 1 :

Circumferential angle measured from the top of the horizontal tube

β :

Circumferential angle

τ :

Liquid flow rate on one side per unit length of cylinder

τ 1 :

Flow rate of the liquid on one side of the tube

ρ :

Density of the liquid

ρ L :

Density of liquid

ρ G :

Density of gas

δ :

Liquid film thickness

δ 0 :

Initial liquid film thickness

ε r :

Dielectric constant

σ :

Surface tension of the liquid

Ω :

Disc spinning speed

CFD:

Computational fluid dynamics

DLAS:

Diode laser absorption spectroscopy

LCDM:

Laser confocal displacement meter

LDV:

Laser Doppler velocimeter

LFDM:

Laser focus displacement meter

LIF:

Laser induced fluorescence

PLIF:

Planar laser induced fluorescence

TAB:

Taylor analogy breakup

TFB:

Turbulent fluidized bed

TFCI:

Thin film colorimetric interferometry

WFT:

Water film thickness

Decel:

Decelerated condition

G:

Gas phase

L:

Liquid phase

Steady:

Steady condition

References

  • Abdulkadir, M., Azzi, A., Zhao, D., Lowndes, I. S., Azzopardi, B. J. 2014. Liquid film thickness behaviour within a large diameter vertical 180° return bend. Chem Eng Sci, 107: 137–148.

    Google Scholar 

  • Abdulkadir, M., Samson, J. N., Zhao, D., Okhiria, D. U., Hernandez-Perez, V. 2018. Annular liquid film thickness prediction in a vertical 180° return bend. Exp Therm Fluid Sci, 96: 205–215.

    Google Scholar 

  • Åkesjö, A., Vamling, L., Sasic, S., Olausson, L., Innings, F., Gourdon, M. 2018. On the measuring of film thickness profiles and local heat transfer coefficients in falling films. Exp Therm Fluid Sci, 99: 287–296.

    Google Scholar 

  • Al-Aufi, Y. A., Hewakandamby, B. N., Dimitrakis, G., Holmes, M., Hasan, A., Watson, N. J. 2019. Thin film thickness measurements in two phase annular flows using ultrasonic pulse echo techniques. Flow Meas Instrum, 66: 67–78.

    Google Scholar 

  • Bai, D., Shibuya, E., Masuda, Y., Nishio, K., Nakagawa, N., Kato, K. 1995. Distinction between upward and downward flows in circulating fluidized beds. Powder Technol, 84: 75–81.

    Google Scholar 

  • Berna, C., Escrivá, A., Muñoz-Cobo, J. L., Herranz, L. E. 2014. Review of droplet entrainment in annular flow: Interfacial waves and onset of entrainment. Prog Nucl Energ, 74: 14–43.

    Google Scholar 

  • Bi, H.-T., Zhou, J., Qin, S.-Z., Grace, J. R. 1996. Annular wall layer thickness in circulating fluidized bed risers. Can J Chem Eng, 74: 811–814.

    Google Scholar 

  • Bonilla-Riaño, A., Rodriguez, I. H., Bannwart, A. C., Rodriguez, O. M. H. 2015. Film thickness measurement in oil–water pipe flow using image processing technique. Exp Therm Fluid Sci, 68: 330–338.

    Google Scholar 

  • Bonilla-Riaño, A., Velasco-Peña, H. F., Bannwart, A. C., Prasser, H. M., Rodriguez, O. M. H. 2019. Water film thickness measurement system for oil-water pipe flow. Flow Meas Instrum, 66: 86–98.

    Google Scholar 

  • Bretherton, F. P. 1961. The motion of long bubbles in tubes. J Fluid Mech, 10: 166–188.

    MathSciNet  MATH  Google Scholar 

  • Cen, H., Lugt, P. M. 2019. Film thickness in a grease lubricated ball bearing. Tribol Int, 134: 26–35.

    Google Scholar 

  • Chao, Q., Zhang, J.-H., Xu, B., Wang, Q. 2018. Multi-position measurement of oil film thickness within the slipper bearing in axial piston pumps. Measurement, 122: 66–72.

    Google Scholar 

  • Chen, B.-W., Li, J.-S., Mao, F., Tian, R.-F. 2019. Numerical study on the characteristics of single wetted flat wire with single droplet impact under the disturbance of airflow. Nucl Eng Des, 345: 74–84.

    Google Scholar 

  • Chen, B.-W., Tian, R.-F., Mao, F. 2020. Analysis of special phenomena of droplet impact on horizontal liquid film at low velocity. Ann Nucl Energy, 136: 107038.

    Google Scholar 

  • Chen, X., Shen, S., Wang, Y., Chen, J., Zhang, J. 2015. Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technology. Int J Heat Mass Tran, 89: 707–713.

    Google Scholar 

  • Cheng, Y.-S., Deng, K.-Y., Li, T. 2010. Measurement and simulation of wall-wetted fuel film thickness. Int J Therm Sci, 49: 733–739.

    Google Scholar 

  • Conte, G., Azzopardi, B. J. 2003. Film thickness variation about a T-junction. Int J Multiphase Flow, 29: 305–328.

    MATH  Google Scholar 

  • Donniacuo, A., Charnay, R., Mastrullo, R., Mauro, A. W., Revellin, R. 2015. Film thickness measurements for annular flow in minichannels: Description of the optical technique and experimental results. Exp Therm Fluid Sci, 69: 73–85.

    Google Scholar 

  • Drosos, E. I. P., Paras, S. V., Karabelas, A. J. 2004. Characteristics of developing free falling films at intermediate Reynolds and high Kapitza numbers. Int J Multiphase Flow, 30: 853–876.

    MATH  Google Scholar 

  • Estrada-Pérez, C. E., Hassan, Y. A., Tan, S.-C. 2011. Experimental characterization of temperature sensitive dyes for laser induced fluorescence thermometry. Rev Sci Instrum, 82: 074901.

    Google Scholar 

  • Fairbrother, F., Stubbs, A. E. 1935. 119. Studies in electro-endosmosis. Part VI. The “bubble-tube” method of measurement. J Chem Soc: 527–529.

    Google Scholar 

  • Fryza, J., Sperka, P., Krupka, I., Hartl, M. 2018. Effects of lateral harmonic vibrations on film thickness in EHL point contacts. Tribol Int, 117: 236–249.

    Google Scholar 

  • Fu, Q.-F, Yang, L.-J, Qu, Y.-Y. 2011. Measurement of annular liquid film thickness in an open-end swirl injector. Aerospace Sci Technol, 15: 117–124.

    Google Scholar 

  • Fukano, T., Furukawa, T. 1998. Prediction of the effects of liquid viscosity on interfacial shear stress and frictional pressure drop in vertical upward gas–liquid annular flow. Int J Multiphase Flow, 24: 587–603.

    MATH  Google Scholar 

  • Ghiaasiaan, S. M., Wu, X., Sadowski, D. L., Abdel-Khalik, S. I. 1997. Hydrodynamic characteristics of counter-current two-phase flow in vertical and inclined channels: Effects of liquid properties. Int J Multiphase Flow, 23: 1063–1083.

    MATH  Google Scholar 

  • Han, Y. B., Shikazono, N. 2009. Measurement of liquid film thickness in micro square channel. Int J Multiphase Flow, 35: 896–903.

    Google Scholar 

  • Han, Y. B., Shikazono, N. 2010. The effect of bubble acceleration on the liquid film thickness in micro tubes. Int J Heat Fluid Fl, 31: 630–639.

    Google Scholar 

  • Han, Y., Kanno, H., Ahn, Y. J., Shikazono, N. 2015. Measurement of liquid film thickness in micro tube annular flow. Int J Multiphase Flow, 73: 264–274.

    Google Scholar 

  • Han, Y., Shikazono, N. 2009. Measurement of the liquid film thickness in micro tube slug flow. Int J Heat Fluid Fl, 30: 842–853.

    Google Scholar 

  • Harris, A. T., Thorpe, R. B., Davidson, J. F. 2002. Characterisation of the annular film thickness in circulating fluidised-bed risers. Chem Eng Sci, 57: 2579–2587.

    Google Scholar 

  • Henstock, W. H., Hanratty, T. J. 1976. The interfacial drag and the height of the wall layer in annular flows. AIChE J, 22: 990–1000.

    Google Scholar 

  • Hori, K., Nakasatomi, M., Nishikawa, K., Sekoguchi, K. 1978. On ripple of annular two-phase flow: 3rd report. effect of liquid viscosity on characteristics of wave and interfacial friction factor. Transactions of the Japan Society of Mechanical Engineers, 44: 3847–3856.

    Google Scholar 

  • Hou, H., Bi, Q., Ma, H., Wu, G. 2012. Distribution characteristics of falling film thickness around a horizontal tube. Desalination, 285: 393–398.

    Google Scholar 

  • Ishii, M., Grolmes, M. A. 1975. Inception criteria for droplet entrainment in two-phase concurrent film flow. AIChE J, 21: 308–318.

    Google Scholar 

  • Jablonka, K., Glovnea, R., Bongaerts, J. 2018. Quantitative measurements of film thickness in a radially loaded deep-groove ball bearing. Tribol Int, 119: 239–249.

    Google Scholar 

  • Ju, P., Liu, Y., Ishii, M., Hibiki, T. 2018a. Prediction of rod film thickness of vertical upward co-current adiabatic flow in rod bundle. Ann Nucl Energy, 121: 1–10.

    Google Scholar 

  • Ju, P., Yang, X., Schlegel, J. P., Liu, Y., Hibiki, T., Ishii, M. 2018b. Average liquid film thickness of annular air-water two-phase flow in 8×8 rod bundle. Int J Heat Fluid Fl, 73: 63–73.

    Google Scholar 

  • Kim, M.-G., Choi, G. 2019. Accurate determination of two-dimensional thin film thickness in spectroscopic imaging reflectometer using color camera and tunable aperture. Opt Commun, 435: 75–80.

    Google Scholar 

  • Kim, S. W., Kirbas, G., Bi, H., Lim, C., Grace, J. R. 2004. Flow structure and thickness of annular downflow layer in a circulating fluidized bed riser. Powder Technol, 142: 48–58.

    Google Scholar 

  • Lewis, J. M., Wang, Y. 2018. Two-phase frictional pressure drop and water film thickness in a thin hydrophilic microchannel. Int J Heat Mass Tran, 127: 813–828.

    Google Scholar 

  • Li, L.-G., Zhao, Z.-W., Zhu, J., Kwan, A. K. H., Zeng, K. L. 2018. Combined effects of water film thickness and polypropylene fibre length on fresh properties of mortar. Constr Build Mater, 174: 586–593.

    Google Scholar 

  • Li, Y.-Z., Li, T., Zhang, H.-T., Sun, Q., Ying, W. 2017. LDV measurements of particle velocity distribution and annular film thickness in a turbulent fluidized bed. Powder Technol, 305: 578–590.

    Google Scholar 

  • Luo, D., Ghiaasiaan, S. M. 1997. Liquid-side interphase mass transfer in cocurrent vertical two-phase channel flows. Int J Heat Mass Tran, 40: 641–655.

    Google Scholar 

  • Mac Giolla Eain, M., Egan, V., Punch, J. 2013. Film thickness measurements in liquid–liquid slug flow regimes. Int J Heat Fluid Fl, 44: 515–523.

    Google Scholar 

  • Mantripragada, V. T., Sarkar, S. 2017. Prediction of drop size from liquid film thickness during rotary disc atomization process. Chem Eng Sci, 158: 227–233.

    Google Scholar 

  • Martínez-Galván, E., Ramos, J. C., Antón, R., Khodabandeh, R. 2011. Film thickness and heat transfer measurements in a spray cooling system with R134a. J Electron Packag, 133: 011002.

    Google Scholar 

  • Mignot, G., Dupont, J., Paranjape, S., Ouldrebai, H., Bissels, W. M., Paladino, D., Prasser, H. M. 2018. Measurement of liquid films thickness in a condensing and re-evaporating environment using attenuation of near infrared light. Nucl Eng Des, 336: 64–73.

    Google Scholar 

  • Morokuma, T., Utaka, Y. 2016. Variation of the liquid film thickness distribution between contacting twin air bubbles during the coalescence process in water and ethanol pools. Int J Heat Mass Tran, 98: 96–107.

    Google Scholar 

  • Muramatsu, K., Youn, Y., Han, Y., Hasegawa, Y., Shikazono, N. 2015. Numerical study on the effect of initial flow velocity on liquid film thickness of accelerated slug flow in a micro tube. Int J Heat Fluid Fl, 54: 77–86.

    Google Scholar 

  • Niese, S., Quodbach, J. 2018. Application of a chromatic confocal measurement system as new approach for in-line wet film thickness determination in continuous oral film manufacturing processes. Int J Pharmaceut, 551: 203–211.

    Google Scholar 

  • Obert, P., Füßer, H.-J., Bartel, D. 2019. Oil distribution and oil film thickness within the piston ring-liner contact measured by laser-induced fluorescence in a reciprocating model test under starved lubrication conditions. Tribol Int, 129: 191–201.

    Google Scholar 

  • Olgac, U., Muradoglu, M. 2013. Effects of surfactant on liquid film thickness in the Bretherton problem. Int J Multiphase Flow, 48: 58–70.

    Google Scholar 

  • Patel, R. S., Weibel, J. A., Garimella, S. V. 2017. Characterization of liquid film thickness in slug-regime microchannel flows. Int J Heat Mass Trans, 115: 1137–1143.

    Google Scholar 

  • Patience, G. S., Chaouki, J. 1993. Gas phase hydrodynamics in the riser of a circulating fluidized bed. Chem Eng Sci, 48: 3195–3205.

    Google Scholar 

  • Qi, R.-H, Lu, L., Yang, H.-X., Qin, F. 2013. Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system. Appl Energ, 112: 93–101.

    Google Scholar 

  • Qiu, Q.-G., Zhu, X.-J., Mu, L., Shen, S. 2015. Numerical study of falling film thickness over fully wetted horizontal round tube. Int J Heat Mass Tran, 84: 893–897.

    Google Scholar 

  • Schmidt, A., Kühnreich, B., Kittel, H., Tropea, C., Roisman, I. V., Dreizler, A., Wagner, S. 2018. Laser based measurement of water film thickness for the application in exhaust after-treatment processes. Int J Heat Fluid Fl, 71: 288–294.

    Google Scholar 

  • Schubring, D., Ashwood, A. C., Shedd, T. A., Hurlburt, E. T. 2010a. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part I: Methods and data. Int J Multiphase Flow, 36: 815–824.

    Google Scholar 

  • Schubring, D., Shedd, T. A. 2011. A model for pressure loss, film thickness, and entrained fraction for gas–liquid annular flow. Int J Heat Fluid Fl, 32: 730–739.

    Google Scholar 

  • Schubring, D., Shedd, T. A., Hurlburt, E. T. 2010b. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part II: Analysis and comparison to models. Int J Multiphase Flow, 36: 825–835.

    Google Scholar 

  • Shri Vignesh, K., Vasudevan, C., Arunkumar, S., Suwathy, R., Venkatesan, M. 2018. Laser induced fluorescence measurement of liquid film thickness and variation in Taylor flow. Eur J Mech B, 70: 85–92.

    Google Scholar 

  • Sun, Y.-H., Guo, C.-H., Jiang, Y. Y., Wang, T., Zhang, L. 2018. Transient film thickness and microscale heat transfer during flow boiling in microchannels. Int J Heat Mass Tran, 116: 458–470.

    Google Scholar 

  • Tan, S., Gao, P., Su, G. 2008. Experimental research on natural circulation complex oscillations under rolling motion conditions. Atomic Energy Science and Technology, 42: 1007–1011.

    Google Scholar 

  • Tan, S.-C., Su, G.-H., Gao, P.-Z. 2009. Heat transfer model of singlephase natural circulation flow under a rolling motion condition. Nucl Eng Des, 239: 2212–2216.

    Google Scholar 

  • Tatterson, D. F., Dallman, J. C., Hanratty, T. J. 1977. Drop sizes in annular gas–liquid flows. AIChE J, 23: 68–76.

    Google Scholar 

  • Tiwari, R., Damsohn, M., Prasser, H.-M. 2014. The effect of initial flow velocity on the liquid film thickness in micro tube accelerated slug flow. Flow Meas Instrum, 40: 124–132.

    Google Scholar 

  • Wang, B., Chen, B.-W., Tian, R.-F. 2019a. Review of research progress on flow and rupture characteristics of liquid film on corrugated plate wall. Ann Nucl Energy, 132: 741–751.

    Google Scholar 

  • Wang, B., Chen, B.-W., Tian, R.-F. 2020. Analysis of fluctuation and breakdown characteristics of liquid film on corrugated plate wall. Ann Nucl Energy, 135: 106946.

    Google Scholar 

  • Wang, B., Tian, R.-F. 2019a. Investigation on flow and breakdown characteristics of water film on vertical corrugated plate wall. Ann Nucl Energy, 127: 120–129.

    Google Scholar 

  • Wang, B., Tian, R.-F. 2019b. Judgement of critical state of water film rupture on corrugated plate wall based on SIFT feature selection algorithm and SVM classification method. Nucl Eng Des, 347: 132–139.

    Google Scholar 

  • Wang, B., Tian, R.-F. 2019c. Study on characteristics of water film breakdown on the corrugated plate wall under the horizontal shear of airflow. Nucl Eng Des, 343: 76–84.

    Google Scholar 

  • Wang, B., Tian, R.-F. 2019d. Study on fluctuation feature and breakdown characteristic of water film on the wall of corrugated plate. Int J Heat Mass Tran, 143: 118501.

    Google Scholar 

  • Wang, J., Chen, X., Lu, T., Chen, X., Shen, S., Liu, B. 2019b. Three-dimensional film thickness distribution of horizontal tube falling film with column flow. Appl Therm Eng, 154: 140–149.

    Google Scholar 

  • Wang, R.-L., Lee, B. A., Lee, J. S., Kim, K. Y., Kim, S. 2012. Analytical estimation of liquid film thickness in two-phase annular flow using electrical resistance measurement. Appl Math Model, 36: 2833–2840.

    MathSciNet  MATH  Google Scholar 

  • Werther, J. 1994. Fluid mechanics of large-scale CFB units. In: Circulating Fluidized Bed Technology IV. Avidan, A. A. Ed. New York: AIChE, 1–14.

    Google Scholar 

  • Xue, T., Yang, L., Ge, P., Qu, L. 2015. Error analysis and liquid film thickness measurement in gas–liquid annular flow. Optik, 126: 2674–2678.

    Google Scholar 

  • Yang, H.-N., Wei, W., Su, M.-X., Chen, J., Cai, X. 2018. Measurement of liquid water film thickness on opaque surface with diode laser absorption spectroscopy. Flow Meas Instrum, 60: 110–114.

    Google Scholar 

  • Youn, Y. J., Han, Y., Shikazono, N. 2018. Liquid film thicknesses of oscillating slug flows in a capillary tube. Int J Heat Mass Tran, 124: 543–551.

    Google Scholar 

  • Youn, Y. J., Muramatsu, K., Han, Y., Shikazono, N. 2015. The effect of initial flow velocity on the liquid film thickness in micro tube accelerated slug flow. Int J Multiphase Flow, 73: 108–117.

    Google Scholar 

  • Youn, Y. J., Muramatsu, K., Han, Y., Shikazono, N. 2016. The effect of bubble deceleration on the liquid film thickness in microtubes. Int J Heat Fluid Fl, 58: 84–92.

    Google Scholar 

  • Yu, Y.-X, Ma, L., He, H.-Y., Zheng, Y., Ma, Y. 2017. Research of non-contact measurement for high viscous fluid falling film thickness on spherical series surface. Measurement, 101: 1–8.

    Google Scholar 

  • Zhang, H., Liu, Q., Qin, B., Bo, H. 2015a. Modeling droplet-laden flows in moisture separators using k-d trees. Ann Nucl Energy, 75: 452–461.

    Google Scholar 

  • Zhang, H., Liu, Q., Qin, B., Bo, H. 2015b. Simulating particle collision process based on Monte Carlo method. J Nucl Sci Technol, 52: 1393–1401.

    Google Scholar 

  • Zhang, S., Liu, J.-X., Zuo, Z.-X., Zhang, Y. 2017. An analytical investigation of oil film thickness for the apex seal in a small Wankel rotary engine. Tribol Int, 116: 383–393.

    Google Scholar 

  • Zhang, W., Johnsson, F., Leckner, B. 1995. Fluid-dynamic boundary layers in CFB boilers. Chem Eng Sci, 50: 201–210.

    Google Scholar 

  • Zhao, C.-Y, Ji, W.-T., Jin, P.-H., Zhong, Y., Tao, W. 2018. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation. Int J Heat Mass Tran, 119: 564–576.

    Google Scholar 

  • Zhou, D.-W., Gambaryan-Roisman, T., Stephan, P. 2009. Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique. Exp Therm Fluid Sci, 33: 273–283.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities, the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (No. 51676052), and Chinese Universities Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ke, B., Chen, B. et al. A technical review of research progress on thin liquid film thickness measurement. Exp. Comput. Multiph. Flow 2, 199–211 (2020). https://doi.org/10.1007/s42757-019-0051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0051-9

Keywords

Navigation