Skip to main content
Log in

An experimental study on the effect of nanoparticle shape on the dynamics of Leidenfrost droplet impingement

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Extensive investigations have been carried out on the thermo-hydrodynamics of nanofluid droplet interaction with heated and non-heated flat surfaces. However, the influence of shape of nanoparticles on the dynamics of droplet impingement on heated flat surfaces is yet to be explored in detail. In this study, hydrodynamics of nanofluid droplet impingement process on heated and mechanically polished aluminum substrate was studied using dissolved Al2O3 nanoparticles having spherical as well as cylindrical shapes. Nanofluids of 0.3% volume fractions were prepared from spherical Al2O3 particles of mean size less than 50 nm and from cylindrical Al2O3 particles of 2–6 nm in diameter and 200–400 nm in length. It was observed that, the impact dynamics is different from that of base pure fluid owing to the presence of nanoparticles. Leidenfrost temperatures of both nanofluids were dropped drastically in comparison with pure liquid. Further, the residence time, spread factor as well as retraction height also exhibit a different behavior against the base fluid. Detailed investigations were carried out for different Weber numbers (We = 18–159) and surface superheat and resul ts obtained were compared with de-ionized (DI) water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Akao, F., Araki, K., Mori, S., Moriyama, A. 1980. Deformation behaviors of a liquid droplet impinging onto hot metal surface. Transactions of the Iron and Steel Institute of Japan., 20: 737–743.

    Article  Google Scholar 

  • Bernardin, J. D., Mudawar, I. 1999. The Leidenfrost point: Experimental study and assessment of existing models. J Heat Transf., 121: 894–903.

    Article  Google Scholar 

  • Chengara, A., Nikolov, A. D., Wasan, D. T., Trokhymchuk, A., Henderson, D. 2004. Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interf Sci., 280: 192–201.

    Article  Google Scholar 

  • De Gennes, P. G., Brochard-Wyart, F., Quéré, D. 2013. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media.

    MATH  Google Scholar 

  • Duursma, G., Sefiane, K., Kennedy, A. 2009. Experimental studies of nanofluid droplets in spray cooling. Heat Transfer Eng., 30: 1108–1120.

    Article  Google Scholar 

  • Ghadimi, A., Saidur, R., Metselaar, H. S. C. 2011. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Tran., 54: 4051–4068.

    Article  Google Scholar 

  • Ghozatloo, A., Azimi Maleki, S., Shariaty-Niassar, M., Morad Rashidi, A. 2015. Investigation of nanoparticles morphology on viscosity of nanofluids and new correlation for prediction. J Nanostruct., 5:161–168.

    Google Scholar 

  • Hatta, N., Fujimoto, H., Takuda, H., Kinoshita, K., Takahashi, O. 1995. Collision dynamics of a water droplet impinging on a rigid surface above the Leidenfrost temperature. ISIJ Int., 35: 50–55.

    Article  Google Scholar 

  • Holman, J. P. 2010. Heat Transfer., 10th end. McGraw-Hill Higher Education.

    Google Scholar 

  • Hsieh, S. S., Liu, H. H., Yeh, Y. F. 2016. Nanofluids spray heat transfer enhancement. Int J Heat Mass Tran., 94: 104–118.

    Article  Google Scholar 

  • Hu, H., Larson, R. G. 2002. Evaporation of a sessile droplet on a substrate. J Phys Chem B., 106: 1334–1344.

    Article  Google Scholar 

  • Huang, C. K., Lin, C. K. 2007. The effects of nano particles on the Leidenfrost phenomenon. In: Proceedings of the NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech, 277–280.

    Google Scholar 

  • Huang, C., Carey, V. P. 2007. The effects of dissolved salt on the Leidenfrost transition. Int J Heat Mass Trans., 50: 269–282.

    Article  Google Scholar 

  • Hwang, Y., Lee, J. K., Lee, C. H., Jung, Y. M., Cheong, S. I., Lee, C. G., Ku, B. C., Jang, S. P. 2007. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta., 455: 70–74.

    Article  Google Scholar 

  • Hwang, Y., Lee, J. K., Lee, J. K., Jeong, Y. M., Cheong, S. I., Ahn, Y. C., Kim, S. H. 2008. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol., 186: 145–153.

    Article  Google Scholar 

  • Jackson, R. G., Kahani, M., Karwa, N., Wu, A., Lamb, R., Taylor, R., Rosengarten, G. 2014. Effect of surface wettability on carbon nanotube water-based nanofluid droplet impingement heat transfer. J Phys: Conf Ser., 525: 012024.

    Google Scholar 

  • Josserand, C., Thoroddsen, S. T. 2016. Drop impact on a solid surface. Ann Rev Fluid Mech., 48: 365–391.

    Article  MathSciNet  Google Scholar 

  • Kahani, M., Jackson, R. G., Rosengarten, G. 2016. Experimental investigation of TiO2/water nanofluid droplet impingement on nanostructured surfaces. Ind Eng Chem Res., 55: 2230–2241.

    Article  Google Scholar 

  • Kim, Y. C. 2015. Evaporation of nanofluid droplet on heated surface. Adv Mech Eng., 7: 1–8

    Google Scholar 

  • Kline, S. J., McClintock, F. A. 1953. Describing uncertainties in singlesample experiments. Mech Eng., 75: 3–8.

    Google Scholar 

  • Kondiparty, K., Nikolov, A., Wu, S., Wasan, D. 2011. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: Statics analysis and experiments. Langmuir., 27: 3324–3335.

    Article  Google Scholar 

  • Liang, G., Mudawar, I. 2017. Review of drop impact on heated walls. Int J Heat Mass Tran., 106: 103–126.

    Article  Google Scholar 

  • Liang, G., Shen, S., Guo, Y., Zhang, J. 2016. Boiling from liquid drops impact on a heated wall. Int J Heat Mass Tran., 100: 48–57.

    Article  Google Scholar 

  • Marengo, M., Antonini, C., Roisman, I. V., Tropea, C. 2011. Drop collisions with simple and complex surfaces. Curr Opin Colloid In., 16: 292–302.

    Article  Google Scholar 

  • Mitra, S., Sathe, M. J., Doroodchi, E., Utikar, R., Shah, M. K., Pareek, V., Joshi, J. B., Evans, G. M. 2013. Droplet impact dynamics on a spherical particle. Chem Eng Sci., 100: 105–119.

    Article  Google Scholar 

  • Moreira, A. L. N., Moita, A. S., Panão, M. R. 2010. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog Energ Combust., 36: 554–580.

    Article  Google Scholar 

  • Murshed, S. M. S., Nieto de Castro, C. A. 2011. Spreading characteristics of nanofluid droplets impacting onto a solid surface. J Nanosci Nanotechnol., 11: 3427–3433.

    Article  Google Scholar 

  • Narayan, G. P., Anoop, K. B., Das, S. K. 2007. Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes. J Appl Phys., 102: 074317.

    Article  Google Scholar 

  • Nikolov, A., Kondiparty, K., Wasan, D. 2010. Nanoparticle selfstructuring in a nanofluid film spreading on a solid surface. Langmuir., 26: 7665–7670.

    Article  Google Scholar 

  • Quéré, D. 2013. Leidenfrost dynamics. Ann Rev Fluid Mech., 45: 197–215.

    Article  MathSciNet  Google Scholar 

  • Schneider, C. A., Rasband, W. S., Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods., 9: 671–675.

    Article  Google Scholar 

  • Shen, J., Liburdy, J. A., Pence, D. V., Narayanan, V. 2009. Droplet impingement dynamics: Effect of surface temperature during boiling and non-boiling conditions. J Phys: Condens Mat., 21: 464133.

    Google Scholar 

  • Shin, D. H., Choi, C. K., Kang, Y. T., Lee, S. H. 2014. Local aggregation characteristics of a nanofluid droplet during evaporation. Int J Heat Mass Tran., 72: 336–344.

    Article  Google Scholar 

  • Simhadri Rajesh, R., Naveen, P. T., Krishnakumar, K., Kumar Ranjith, S. 2019. Dynamics of single droplet impact on cylindricallycurved superheated surfaces. Exp Therm Fluid Sci., 101: 251–262.

    Article  Google Scholar 

  • Vafaei, S., Borca-Tasciuc, T., Podowski, M. Z., Purkayastha, A., Ramanath, G., Ajayan, P. M. 2006. Effect of nanoparticles on sessile droplet contact angle. Nanotechnology., 17: 2523–2527.

    Article  Google Scholar 

  • Wasan, D., Nikolov, A., Kondiparty, K. 2011. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure. Curr Opin Colloid In., 16: 344–349.

    Article  Google Scholar 

  • Weisensee, P. B., Ma, J., Shin, Y. H., Tian, J., Chang, Y., King, W. P., Miljkovic, N. 2017. Droplet impact on vibrating superhydrophobic surfaces. Phys Rev Fluids., 2: 103601.

    Article  Google Scholar 

  • Xu, W., Choi, C. H. 2009. Nanofluids evaporation kinetics on microstructured superhydrophobic surfaces. In: Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 12: Micro and Nano Systems, Parts A and B, 1015–1024.

    Google Scholar 

  • Yarin, A. L. 2006. DROP IMPACT DYNAMICS: Splashing, spreading, receding, bouncing…. Ann Rev Fluid Mech., 38: 159–192.

    Article  MathSciNet  Google Scholar 

  • Yu, W., Xie, H. 2012. A review on nanofluids: Preparation, stability mechanisms, and applications. J Nanomater., 2012: 1–17.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from CERD-KTU, Kerala, India (Research Grant: KTU/RESEARCH 3/2645/2016), and SARD-KSCSTE, Kerala, India, for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar Ranjith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulahannan, L., Krishnakumar, K., Nair, A.R. et al. An experimental study on the effect of nanoparticle shape on the dynamics of Leidenfrost droplet impingement. Exp. Comput. Multiph. Flow 3, 47–58 (2021). https://doi.org/10.1007/s42757-019-0053-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0053-7

Keywords

Navigation