Skip to main content
Log in

Computational modeling of fiber transport in human respiratory airways—A review

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Investigations on the respiratory transport and deposition of airborne asbestos, man-made vitreous fibers (MMVFs), and carbon nanofiber/carbon nanotubes have been actively conducted in the past few decades. The elongated particles’ distinctive needle-like geometry has been identified as the main cause of extreme carcinogenicity when compared to inhaled spherical particles. Consequently, uncovering the intrinsic relationship between the particle’s unique elongated shape and its transport characteristics in human respiratory systems is crucial for understanding fiber inhalation toxicity. Currently, such information can only be provided by computational modeling. This review summarized the current state of the art of computational modeling of fiber transport in the human respiratory tract. The needed future researches were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Asgharian, B., Ahmadi, G. 1998. Effect of fiber geometry on deposition in small airways of the lung. Aerosol Sci Tech, 29: 459–474.

    Google Scholar 

  • Batchelor, G. K. 1970. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech, 44: 419–440.

    MathSciNet  MATH  Google Scholar 

  • Brenner, H. 1963. The Stokes resistance of an arbitrary particle. Chem Eng Sci, 18: 1–25.

    Google Scholar 

  • Brown, R. C. 1994. Man-made mineral fibres: Hazard, risk and regulation. Indoor Environ, 3: 237–247.

    Google Scholar 

  • Burgers, J. M. 1938. Second report on viscosity and plasticity. Prepared by the Committee for the Study of Viscosity of the Academy of Sciences at Amsterdam. Kon Ned Akad Wet Verhand, 16: 1–287.

    Google Scholar 

  • Cavallo, D., Campopiano, A., Cardinali, G., Casciardi, S., De Simone, P., Kovacs, D., Perniconi, B., Spagnoli, G., Ursini, C. L., Fanizza, C. 2004. Cytotoxic and oxidative effects induced by man-made vitreous fibers (MMVFs) in a human mesothelial cell line. Toxicology, 201: 219–229.

    Google Scholar 

  • Chandrasekhar, S. 1943. Stochastic problems in physics and astronomy. Rev Mod Phys, 15: 1–89.

    MathSciNet  MATH  Google Scholar 

  • Cheng, Y. S., Holmes, T. D., Gao, J., Guilmette, R. A., Li, S., Surakitbanharn, Y., Rowlings, C. 2001. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med, 14: 267–280.

    Google Scholar 

  • Cheng, Y. S., Yeh, H. C., Allen, M. D. 1988. Dynamic shape factor of a plate-like particle. Aerosol Sci Tech, 8: 109–123.

    Google Scholar 

  • Chhabra, R. P., Singh, T., Nandrajog, S. 1995. Drag on chains and agglomerates of spheres in viscous Newtonian and power law fluids. Can J Chem Eng, 73: 566–571.

    Google Scholar 

  • Cichocki, B., Hinsen, K. 1995. Stokes drag on conglomerates of spheres. Phys Fluids, 7: 285–291.

    MATH  Google Scholar 

  • Cui, Y., Ravnik, J., Hriberšek, M., Steinmann, P. 2018. A novel model for the lift force acting on a prolate spheroidal particle in an arbitrary non-uniform flow. Part I. Lift force due to the streamwise flow shear. Int J Multiphase Flow, 104: 103–112.

    MathSciNet  Google Scholar 

  • Cunningham, E. 1910. On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond A, 83: 357–365.

    MATH  Google Scholar 

  • Dahneke, B. E. 1973. Slip correction factors for nonspherical bodies—III the form of the general law. J Aerosol Sci, 4: 163–170.

    Google Scholar 

  • Dastan, A., Abouali, O., Ahmadi, G. 2014. CFD simulation of total and regional fiber deposition in human nasal cavities. J Aerosol Sci, 69: 132–149.

    Google Scholar 

  • Einstein, A. 1905. On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Annalen der Physik, 17: 549–560.

    Google Scholar 

  • Eisner, A. D., Gallily, I. 1981. On the stochastic nature of the motion of nonspherical aerosol particles. J Colloid Interface Sci, 81: 214–233.

    Google Scholar 

  • EPA. 2003. Report on the peer consultation workshop to discuss a proposed protocol to assess asbestos-related risk, final report. Office of Solid Waste and Emergency Response, Washington D.C.

    Google Scholar 

  • Epstein, P. S. 1924. On the resistance experienced by spheres in their motion through gases. Phys Rev, 23: 710–733.

    Google Scholar 

  • Fan, F. G., Ahmadi, G. 1995a. A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J Aerosol Sci, 26: 813–840.

    Google Scholar 

  • Fan, F. G., Ahmadi, G. 1995b. Dispersion of ellipsoidal particles in an isotropic pseudo-turbulent flow field. J Fluid Eng, 117: 154–161.

    Google Scholar 

  • Fan, F. G., Ahmadi, G. 2000. Wall deposition of small ellipsoids from turbulent air flows—a Brownian dynamics simulation. J Aerosol Sci, 31: 1205–1229.

    Google Scholar 

  • Fan, F. G., Soltani, M., Ahmadi, G., Hart, S. C. 1997. Flow-induced resuspension of rigid-link fibers from surfaces. Aerosol Sci Tech, 27: 97–115.

    Google Scholar 

  • Feng, Y., Kleinstreuer, C. 2013. Analysis of non-spherical particle transport in complex internal shear flows. Phys Fluids, 25: 091904.

    Google Scholar 

  • Gallily, I., Cohen, A. H. 1979. On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J Colloid Interf Sci, 68: 338–356.

    Google Scholar 

  • Gans, R. 1928. Zur Theorie der Brownschen Molekularbewegung. Ann Phys, 391: 628–656.

    MATH  Google Scholar 

  • Garcia, G. J. M., Tewksbury, E. W., Wong, B. A., Kimbell, J. S. 2009. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J Aerosol Med Pulm D, 22: 139–156.

    Google Scholar 

  • Goldstein, H. 1980. Classical Mechanics, 2nd edn. Addison-Wesley.

  • Guo, X. H., Lin, J. Z., Nie, D. M. 2011. New formula for drag coefficient of cylindrical particles. Particuology, 9: 114–120.

    Google Scholar 

  • Gupta, D., Peters, M. H. 1985. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. J Colloid Interf Sci, 104: 375–389.

    Google Scholar 

  • Haider, A., Levenspiel, O. 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol, 58: 63–70.

    Google Scholar 

  • Happel, J., Brenner, H. 1973. Low Reynolds Number Hydrodynamics. Leyden: Noordhoff.

    MATH  Google Scholar 

  • Harper, E. Y., Chang, I. D. 1968. Maximum dissipating resulting from lift in a slow viscous flow. J Fluid Mech, 33: 209–225.

    MATH  Google Scholar 

  • Hesterberg, T. W., Anderson, R., Bernstein, D. M., Bunn, W. B., Chase, G. A., Jankousky, A. L., Marsh, G. M., McClellan, R. O. 2012. Product stewardship and science: Safe manufacture and use of fiber glass. Regul Toxicol Pharm, 62: 257–277.

    Google Scholar 

  • Hinze, J. O. 1975. Turbulence, 2nd edn. New York: McGraw-Hill.

    Google Scholar 

  • Hölzer, A., Sommerfeld, M. 2009. Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput Fluids, 38: 572–589.

    Google Scholar 

  • Horvath, H. 1974. The sedimentation behavior of non-spherical particles. Staub Reinhalt Luft, 34: 197–202.

    Google Scholar 

  • Hughes, J. M., Jones, R. N., Glindmeyer, H. W., Hammad, Y. Y., Weill, H. 1993. Follow up study of workers exposed to man made mineral fibres. Occup Environ Med, 50: 658–667.

    Google Scholar 

  • Hughes, P. C. 1986. Spacecraft Attitude Dynamics. New York: Wiley.

    Google Scholar 

  • Hughes, T. J. R., Oberai, A. A. O., Mazzei, L. 2001. Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids, 13: 1784–1799.

    MATH  Google Scholar 

  • International Agency for Research on Cancer (IARC). 2002. IARC monographs on the evaluation of carcinogenic risks to humans. man-made vitreous fibres. IARC, Lyon, 81: 1–418.

    Google Scholar 

  • Inthavong, K., Wen, J., Tian, Z. F., Tu, J. Y. 2008. Numerical study of fibre deposition in a human nasal cavity. J Aerosol Sci, 39: 253–265.

    Google Scholar 

  • Invernizzi, N. 2011. Nanotechnology between the lab and the shop floor: What are the effects on labor? J Nanopart Res, 13: 2249–2268.

    Google Scholar 

  • Jeffery, G. B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. P Roy Soc A, 102: 161–179.

    MATH  Google Scholar 

  • Kelly, J. T., Asgharian, B. C., Kimbell, J. S., Wong, B. A. 2004. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: inertial regime particles. Aerosol Sci Tech, 38: 1063–1071.

    Google Scholar 

  • Kvasnak, W., Ahmadi, G. 1996. Deposition of ellipsoidal particles in turbulent duct flows. Chem Eng Sci, 51: 5137–5148.

    Google Scholar 

  • Lam, C.-W., James, J. T., McClusjey, R., Hunter, R. L. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxical Sci, 77: 126–134.

    Google Scholar 

  • Lasso, I. A., Weidman, P. D. 1986. Stokes drag on hollow cylinders and conglomerates. Phys Fluids, 29: 3921–3934.

    Google Scholar 

  • Launder, B. E., Reece, G. J., Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech, 68: 537–566.

    MATH  Google Scholar 

  • LeMasters, G. K., Lockey, J. E., Yiin, J. H., Hilbert, T. J., Levin, L. S., Rice, C. H. 2003. Mortality of workers occupationally exposed to refractory ceramic fibers. J Occup Environ Med, 45: 440–450.

    Google Scholar 

  • Li, K., Ma, H. L. 2018. Deposition dynamics of rod-shaped colloids during transport in porous media under favorable conditions. Langmuir, 34: 2967–2980.

    Google Scholar 

  • Lippmann, M. 1988. Asbestos exposure indices. Environ Res, 46: 86–106.

    Google Scholar 

  • Lippmann, M. 2014. Toxicological and epidemiological studies on effects of airborne fibers: Coherence and public health implications. Crit Rev Toxicol, 44: 643–695.

    Google Scholar 

  • Luo, S., Wang, J., Yu, S., Xia, G. D., Li, Z. G. 2018. Shear lift forces on nanocylinders in the free molecule regime. J Fluid Mech, 846: 392–410.

    MathSciNet  MATH  Google Scholar 

  • Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A. O., van Ravenzwaay, B., Landsiedel, R. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci, 112: 468–481.

    Google Scholar 

  • Marsh, G. M., Buchanich, J. M., Youk, A. O. 2001. Historical cohort study of US man-made vitreous fiber production workers: VI. respiratory system cancer standardized mortality ratios adjusted for the confounding effect of cigarette smoking. J Occup Environ Med, 43: 803–808.

    Google Scholar 

  • McNown, J. S., Malaika, J. 1950. Effects of particle shape on settling velocity at low Reynolds numbers. Eos Trans AGU, 31: 74–82.

    Google Scholar 

  • Mercer, R. R., Hubbs, A. F., Scabilloni, J. F., Wang, L., Battelli, L. A., Friend, S., Castranova, V., Porter, D. W. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol, 8: 21.

    Google Scholar 

  • Mercer, R. R., Scabilloni, J., Wang, L., Kisin, E., Murray, A. R., Schwegler-Berry, D., Shvedova, A. A., Castranova, V. 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol-Lung C, 294: L87–L97.

    Google Scholar 

  • Moin, P., Mahesh, K. 1998. DIRECT NUMERICAL SIMULATION: A tool In turbulence research. Ann Rev Fluid Mech, 30: 539–578.

    MathSciNet  MATH  Google Scholar 

  • Moser, R. D., Kim, J., Mansour, N. N. 1999. Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys Fluids, 11: 943–945.

    MATH  Google Scholar 

  • Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., Arras, M., Fonseca, A., Nagy, J. B., Lison, D. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacoly, 207: 221–231.

    Google Scholar 

  • Murphy, F. A., Poland, C. A., Duffin, R., Al-Jamal, K. T., Ali-Boucetta, H., Nunes, A., Byrne, F., Prina-Mello, A., Volkov, Y., Li, S., et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol, 178: 2587–2600.

    Google Scholar 

  • Murray, A. R., Kisin, E. R., Tkach, A. V., Yanamala, N., Mercer, R., Young, S. H., Fadeel, B., Kagan, V. E., Shvedova, A. A. 2012. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol, 9: 10.

    Google Scholar 

  • Nielsen, G. D., Koponen, I. K. 2018. Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies. Regul Toxicol Pharm, 94: 252–270.

    Google Scholar 

  • NIOSH. 1990. Comments of the National Institute for Occupational Safety and Health on the Occupational Safety and Health Administration’s Notice of Proposed Rulemaking on Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. OSHA Docket no. H-033d, April 9, 1990.

  • NIOSH. 2008. Strategic plan for NIOSH nanotechnology research and guidance: Filling the knowledge gaps. Available at https://stacks.cdc.gov/view/cdc/5481.

  • Njobuenwu, D. O., Fairweather, M. 2014. Effect of shape on inertial particle dynamics in a channel flow. Flow Turbul Combust, 92: 83–101.

    Google Scholar 

  • Njobuenwu, D. O., Fairweather, M. 2015. Dynamics of single, non-spherical ellipsoidal particles in a turbulent channel flow. Chem Eng Sci, 123: 265–282.

    Google Scholar 

  • Njobuenwu, D. O., Fairweather, M. 2017. Large eddy simulation of inertial fiber deposition mechanisms in a vertical downward turbulent channel flow. AIChE J, 63: 1451–1465.

    Google Scholar 

  • Oberbeck, A. J. 1876. Ueber stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 1876: 62–80.

    MathSciNet  MATH  Google Scholar 

  • Oseen, C. W. 1927. Hydrodynamik. Leipzig: Akademische Verlagsgesellshaf.

    MATH  Google Scholar 

  • Ouchene, R., Khalij, M., Arcen, B., Tanière, A. 2016. A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol, 303: 33–43.

    MATH  Google Scholar 

  • Ounis, H., Ahmadi, G., McLaughlin, J. B. 1991. Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interf Sci, 143: 266–277.

    Google Scholar 

  • Pattle, R. E. 1961. The retention of gases and particles in the human nose. In: Inhaled Particles and Vapors. Davies, C. N. ed. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotech, 3: 423–428.

    Google Scholar 

  • Porter, D. W., Hubbs, A. F., Mercer, R. R., Wu, N., Wolfarth, M. G., Sriram, K., Leonard, S., Battelli, L., Schwegler-Berry, D., Friend, S. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology, 269: 136–147.

    Google Scholar 

  • Pott, F., Ziem, U., Reiffer, F. J., Huth, F., Ernst, H., Mohr, U. 1987. Carcinogenicity studies on fibres, metal compounds, and some other dusts in rats. Exp Pathol, 32: 129–152.

    Google Scholar 

  • Saffman, P. G. 1965. The lift on a small sphere in a slow shear flow. J Fluid Mech, 22: 385–400.

    MATH  Google Scholar 

  • Schubauer-Berigan, M. K., Dahm, M. M., Yencken, M. S. 2011. Engineered carbonaceous nanomaterials manufacturers in the United States. J Occup Environ Med, 53: S62–S67.

    Google Scholar 

  • Service, R. F. 1998. Nanotubes: The next asbestos? Science, 281: 941.

    Google Scholar 

  • Shanley, K. T., Ahmadi, G., Hopke, P. K., Cheng, Y. S. 2018. Simulated airflow and rigid fiber behavior in a realistic nasal airway model. Particul Sci Technol, 36: 131–140.

    Google Scholar 

  • Shanley, K. T., Zamankhan, P., Ahmadi, G., Hopke, P. K., Cheng, Y. S. 2008. Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal Toxicol, 20: 1093–1100.

    Google Scholar 

  • Shapiro, M., Goldenberg, M. 1993. Deposition of glass fiber particles from turbulent air flow in a pipe. J Aerosol Sci, 24: 65–87.

    Google Scholar 

  • Simonato, L., Fletcher, A. C., Cherrie, J. W., Andersen, A., Bertazzi, P., Charnay, N., Claude, J., Dodgson, J., Esteve, J., Frentzel-Beyme, R., et al. 1987. The international agency for research on cancer historical cohort study of MMMF production workers in seven European countries: Extension of the follow-up. Ann Occup Hyg, 31: 603–623.

    Google Scholar 

  • Stöber, W. 1972. Dynamic shape factors of nonspherical aerosol particles. In: Assessment of Airborne Particles. Mercer, T., et al. Eds. Springfield, IL: Charles C. Thomas: 249–289.

    Google Scholar 

  • Stokes, G. G. 1851. On the effect of internal friction of fluids on the motion of pendulums. Trans Cam Phil Soc, 9: 8–106.

    Google Scholar 

  • Su, W. C., Cheng, Y.-S. 2005. Deposition of fiber in the human nasal airway. Aerosol Sci Tech, 39: 888–901.

    Google Scholar 

  • Tavakol, M. M., Abouali, O., Yaghoubi, M., Ahmadi, G. 2015. Dispersion and deposition of ellipsoidal particles in a fully developed laminar pipe flow using non-creeping formulations for hydrodynamic forces and torques. Int J Multiphase Flow, 75: 54–67.

    MathSciNet  Google Scholar 

  • Tavakol, M. M., Ghahramani, E., Abouali, O., Yaghoubi, M., Ahmadi, G. 2017. Deposition fraction of ellipsoidal fibers in a model of human nasal cavity for laminar and turbulent flows. J Aerosol Sci, 113: 52–70.

    Google Scholar 

  • Tian, L., Ahmadi, G. 2013. Fiber transport and deposition in human upper tracheobronchial airways. J Aerosol Sci, 60: 1–20.

    Google Scholar 

  • Tian, L., Ahmadi, G. 2016a. On nano-ellipsoid transport and deposition in the lung first bifurcation-effect of slip correction. J Fluid Eng, 138: 101101.

    Google Scholar 

  • Tian, L., Ahmadi, G. 2016b. Transport and deposition of nano-fibers in human upper tracheobronchial airways. J Aerosol Sci, 91: 22–32.

    Google Scholar 

  • Tian, L., Ahmadi, G., Tu, J. 2016. Brownian diffusion of fibers. Aerosol Sci Tech, 50: 474–486.

    Google Scholar 

  • Tian, L., Ahmadi, G., Tu, J. Y. 2017. Mobility of nanofiber, nanorod, and straight-chain nanoparticles in gases. Aerosol Sci Tech, 51: 587–601.

    Google Scholar 

  • Tian, L., Ahmadi, G., Wang, Z. C., Hopke, P. K. 2012. Transport and deposition of ellipsoidal fibers in low Reynolds number flows. J Aerosol Sci, 45: 1–18.

    Google Scholar 

  • Tian, L., Inthavong, K., Lidén, G., Shang, Y. D., Tu, J. Y. 2016. Transport and deposition of welding fume agglomerates in a realistic human nasal airway. Ann Occup Hyg, 60: 731–747.

    Google Scholar 

  • Tran-Cong, S., Gay, M., Michaelides, E. E. 2004. Drag coefficients of irregularly shaped particles. Powder Technol, 139: 21–32.

    Google Scholar 

  • Uhlenbeck, G. E., Ornstein, L. S. 1930. On the theory of the Brownian motion. Phys Rev, 36: 823–841.

    MATH  Google Scholar 

  • Wagner, C. J. 1986. Mesothelioma and mineral fibers, accomplishments in cancer research 1985 prize year. General Motors Cancer Research Foundation: 60–72.

  • Wang, Z. C., Hopke, P. K., Ahmadi, G., Cheng, Y.-S., Baron, P. A. 2008. Fibrous particle deposition in human nasal passage: The influence of particle length, flow rate, and geometry of nasal airway. J Aerosol Sci, 39: 1040–1054.

    Google Scholar 

  • Wilcox, D. C. 2006. Turbulence Modeling for CFD, 3rd edn. DCW Industries.

  • Yin, C., Rosendahl, L., Kær, S. K., Condra, T. J. 2004. Use of numerical modeling in design for co-firing biomass in wall-fired burners. Chem Eng Sci, 59: 3281–3292.

    Google Scholar 

  • Zastawny, M., Mallouppas, G., Zhao, F., van Wachem, B. 2012. Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int J Multiphase Flow, 39: 227–239.

    Google Scholar 

  • Zhang, H. F., Ahmadi, G., Fan, F. G., McLaughlin, J. B. 2001. Ellipsoidal particles transport and deposition in turbulent channel flows. Int J Multiphase Flow, 27: 971–1009.

    MATH  Google Scholar 

  • Zhou, Y., Su, W.-C., Cheng, Y. S. 2007. Fiber deposition in the tracheabronhical region: Experimental measurements. Inhal Toxicol, 19: 1071–1078.

    Google Scholar 

Download references

Acknowledgements

The financial supports provided by the Australian Research Council (Grant No. DE 180101138) and the National Institute for Occupational Safety and Health (NIOSH Grant No. R01 OH003900) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Ahmadi, G. Computational modeling of fiber transport in human respiratory airways—A review. Exp. Comput. Multiph. Flow 3, 1–20 (2021). https://doi.org/10.1007/s42757-020-0061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0061-7

Keywords

Navigation