Skip to main content
Log in

Review on air and water thermal energy storage of buildings with phase change materials

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

With high energy consumption in buildings, the emissions of greenhouse gases are also increasing. It leads to some environmental problems. To realize resource conservation and environmental protection target, latent heat thermal energy storage systems (LHTES) are introduced into all kinds of buildings. A variety of air-LHTES and water-LHTES are analyzed in this study based on the heat transfer fluid medium adopted. The results of this study indicate that the air-LHTES uses the low-temperature ambient air to store cold during nighttime and releases cold during the daytime in summer vice versa in winter with auxiliary heat sources. The water-LHTES stores the cold and heat generated by various natural sources (solar energy, nighttime sky radiation, air conditioning condensate) through the water, and then releases the cold and heat to the buildings to reduce the energy consumption of the buildings. However, for some regions with extremely hot climate, the ambient temperature is still high during nighttime in summer. It is difficult to achieve cold storage of ambient air. Accordingly, other natural cold sources should be adopted for cooling in air-LHTES. Due to the cooling effect of nighttime sky radiation, water temperature in water-LHTES could be lower enough for cold storage. Thus, a combination system of water-LHTES and air-LHTES is recommended. In this system, cold storage is achieved by collecting low-temperature, and released by supplying cooling air. The proposed system can also achieve heat storage in winter by collecting solar energy, and release heat by supplying heating air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Aadmi, M., Karkri, M., El Hammouti, M. 2014. Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations. Energy, 72: 381–392.

    Google Scholar 

  • Abdelkader, B. A., Zubair, S. M. 2019. The effect of a number of baffles on the performance of shell-and-tube heat exchangers. Heat Transfer Eng, 40: 39–52.

    Google Scholar 

  • Agyenim, F., Eames, P., Smyth, M. 2010a. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew Energ, 35: 198–207.

    Google Scholar 

  • Agyenim, F., Hewitt, N., Eames, P., Smyth, M. 2010b. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energ Rev, 14: 615–628.

    Google Scholar 

  • Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y., Mohammad, A. T. 2014. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energ Buildings, 68: 33–41.

    Google Scholar 

  • Al-Farayedhi, A. A., Ibrahim, N. I., Gandhidasan, P. 2014. Condensate as a water source from vapor compression systems in hot and humid regions. Desalination, 349: 60–67.

    Google Scholar 

  • Algarni, S., Saleel, C. A., Mujeebu, M. A. 2018. Air-conditioning condensate recovery and applications—Current developments and challenges ahead. Sustain Cities Soc, 37: 263–274.

    Google Scholar 

  • Amir, A., van Hout, R. 2019. A transient model for optimizing a hybrid nocturnal sky radiation cooling system. Renew Energ, 132: 370–380.

    Google Scholar 

  • Antony Aroul Raj, V., Velraj, R. 2011. Heat transfer and pressure drop studies on a PCM-heat exchanger module for free cooling applications. Int J Therm Sci, 50: 1573–1582.

    Google Scholar 

  • Arkar, C., Medved, S. 2007. Free cooling of a building using PCM heat storage integrated into the ventilation system. Sol Energy, 81: 1078–1087.

    Google Scholar 

  • Arkar, C., Vidrih, B., Medved, S. 2007. Efficiency of free cooling using latent heat storage integrated into the ventilation system of a low energy building. Int J Refrig, 30: 134–143.

    Google Scholar 

  • Bechiri, M., Mansouri, K. 2015. Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system. Renew Energ, 74: 825–838.

    Google Scholar 

  • Bezyan, B., Porkhial, S., Mehrizi, A. A. 2015. 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration. Appl Therm Eng, 87: 655–668.

    Google Scholar 

  • Butala, V., Stritih, U. 2009. Experimental investigation of PCM cold storage. Energ Buildings, 41: 354–359.

    Google Scholar 

  • Cao, Z. H. 2019a. Recovery and utilization technology of condensed water in air conditioning system. Contamination Control & Air-Conditioning Technology: 106–108.

    Google Scholar 

  • Cao, Z. H. 2019b. Analysis of the status quo of the study of the technology of recycling the air conditioning condensate in China. Applied Energy Technology: 49–52.

    Google Scholar 

  • Cárdenas, B., León, N. 2013. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew Sustain Energ Rev, 27: 724–737.

    Google Scholar 

  • Chaiyat, N. 2015. Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energ Convers Manage, 94: 150–158.

    Google Scholar 

  • Chen, Z., Gao, D., Shi, J. 2014. Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Tran, 72: 646–655.

    Google Scholar 

  • Chung, M. H., Park, J. C. 2016. Development of PCM cool roof system to control urban heat island considering temperate climatic conditions. Energ Buildings, 116: 341–348.

    Google Scholar 

  • Cronshaw, I. 2015. World Energy Outlook 2014 projections to 2040: Natural gas and coal trade, and the role of China. Aust J Agr Resour Ec, 59: 571–585.

    Google Scholar 

  • Cruz-Peragon, F., Palomar, J. M., Casanova, P. J., Dorado, M. P., Manzano-Agugliaro, F. 2012. Characterization of solar flat plate collectors. Renew Sustain Energ Rev, 16: 1709–1720.

    Google Scholar 

  • De Dear, R. J., Brager, G. S. 2002. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energ Buildings, 34: 549–561.

    Google Scholar 

  • Dolado, P., Lazaro, A., Marin, J. M., Zalba, B. 2011. Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energ Convers Manage, 52: 1890–1907.

    Google Scholar 

  • Du, R., Li, W., Xiong, T., Yang, X., Wang, Y., Shah, K. W. 2019. Numerical investigation on the melting of nanoparticle-enhanced PCM in latent heat energy storage unit with spiral coil heat exchanger. Build Simul, 12: 869–879.

    Google Scholar 

  • Esapour, M., Hosseini, M. J., Ranjbar, A. A., Bahrampoury, R. 2016. Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems. Appl Therm Eng, 109: 351–363.

    Google Scholar 

  • Ezan, M. A., Ozdogan, M., Erek, A. 2011. Experimental study on charging and discharging periods of water in a latent heat storage unit. Int J Therm Sci, 50: 2205–2219.

    Google Scholar 

  • Fang, X., Fan, L., Ding, Q., Yao, X., Wu, Y., Hou, J., Wang, X., Yu, Z., Cheng, G., Hu, Y. 2014. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energ Convers Manage, 80: 103–109.

    Google Scholar 

  • Farid, M. M., Khudhair, A. M., Razack, S. A. K., Al-Hallaj, S. 2004. A review on phase change energy storage: Materials and applications. Energ Convers Manage, 45: 1597–1615.

    Google Scholar 

  • Fernandes, D., Pitié, F., Cáceres, G., Baeyens, J. 2012. Thermal energy storage: “How previous findings determine current research priorities”. Energy, 39: 246–257.

    Google Scholar 

  • Fornarelli, F., Camporeale, S. M., Fortunato, B., Torresi, M., Oresta, P., Magliocchetti, L., Miliozzi, A., Santo, G. 2016. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl Energ, 164: 711–722.

    Google Scholar 

  • Frusteri, F., Leonardi, V., Maggio, G. 2006. Numerical approach to describe the phase change of an inorganic PCM containing carbon fibres. Appl Therm Eng, 26: 1883–1892.

    Google Scholar 

  • Fukai, J., Kanou, M., Kodama, Y., Miyatake, O. 2000. Thermal conductivity enhancement of energy storage media using carbon fibers. Energ Convers Manage, 41: 1543–1556.

    Google Scholar 

  • Geros, V., Santamouris, M., Karatasou, S., Tsangrassoulis, A., Papanikolaou, N. 2005. On the cooling potential of night ventilation techniques in the urban environment. Energ Buildings, 37: 243–257.

    Google Scholar 

  • Givoni, B. 1991. Performance and applicability of passive and low-energy cooling systems. Energ Buildings, 17: 177–199.

    Google Scholar 

  • Günther, E., Mehling, H., Hiebler, S. 2007a. Modeling of subcooling and solidification of phase change materials. Modelling Simul Mater Sci Eng, 15: 879–892.

    Google Scholar 

  • Günther, E., Mehling, H., Werner, M. 2007b. Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J Phys D: Appl Phys, 40: 4636–4641.

    Google Scholar 

  • Hed, G., Bellander, R. 2006. Mathematical modelling of PCM air heat exchanger. Energ Buildings, 38: 82–89.

    Google Scholar 

  • Ho, C. J., Gao, J. Y. 2013. An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int J Heat Mass Tran, 62: 2–8.

    Google Scholar 

  • Hosseini, M. J., Rahimi, M., Bahrampoury, R. 2014. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass, 50: 128–136.

    Google Scholar 

  • Ibrahim, N. I., Al-Sulaiman, F. A., Rahman, S., Yilbas, B. S., Sahin, A. Z. 2017. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renew Sustain Energ Rev, 74: 26–50.

    Google Scholar 

  • Ismail, K. A. R., Lino, F. A. M., da Silva, R. C. R., de Jesus, A. B., Paixão, L. C. 2014. Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube. Int J Therm Sci, 75: 184–193.

    Google Scholar 

  • Ismail, K. A. R., Moraes, R. I. R. 2009. A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. Int J Heat Mass Tran, 52: 4195–4202.

    MATH  Google Scholar 

  • Iten, M., Liu, S. 2014. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems. Energ Convers Manage, 77: 608–627.

    Google Scholar 

  • Iten, M., Liu, S., Shukla, A. 2016. A review on the air-PCM-TES application for free cooling and heating in the buildings. Renew Sustain Energ Rev, 61: 175–186.

    Google Scholar 

  • Janssen, L. A. M., Hoogendoorn, C. J. 1978. Laminar convective heat transfer in helical coiled tubes. Int J Heat Mass Tran, 21: 1197–1206.

    Google Scholar 

  • Jiang, Y., Zhang, Y. P., Xu, J. J., Jiang, Y., Kang, Y. B. 2000. Experimental study of thermal characteristics of latent thermal storage systems with rectangular containers containing PCM. Acta Energiae Solaris Sinica, 21: 358–363.

    Google Scholar 

  • Jmal, I., Baccar, M. 2015. Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl Therm Eng, 84: 320–330.

    Google Scholar 

  • Kang, Y., Jiang, Y., Zhang, Y. 2003. Modeling and experimental study on an innovative passive cooling system—NVP system. Energ Buildings, 35: 417–425.

    Google Scholar 

  • Kenisarin, M., Mahkamov, K. 2007. Solar energy storage using phase change materials. Renew Sustain Energ Rev, 11: 1913–1965.

    Google Scholar 

  • Kibria, M. A., Anisur, M. R., Mahfuz, M. H., Saidur, R., Metselaar, I. H. S. C. 2014. Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. Int Commun Heat Mass, 53: 71–78.

    Google Scholar 

  • Lazaro, A., Dolado, P., Marin, J. M., Zalba, B. 2009a. PCM-air heat exchangers for free-cooling applications in buildings: Empirical model and application to design. Energ Convers Manage, 50: 444–449.

    Google Scholar 

  • Lazaro, A., Dolado, P., Marín, J. M., Zalba, B. 2009b. PCM-air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes. Energ Convers Manage, 50: 439–443.

    Google Scholar 

  • Li, X., Tong, C., Duanmu, L., Liu, L. 2017. Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material. Sci Technol Built En, 23: 430–440.

    Google Scholar 

  • Li, Z., Wu, Z. 2014. Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix. Sol Energy, 99: 172–184.

    Google Scholar 

  • Lin, W., Ma, Z., McDowell, C., Baghi, Y., Banfield, B. 2020. Optimal design of a thermal energy storage system using phase change materials for a net-zero energy Solar Decathlon house. Energ Buildings, 208: 109626.

    Google Scholar 

  • Liu, M., Saman, W., Bruno, F. 2012. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energ Rev, 16: 2118–2132.

    Google Scholar 

  • Liu, M., Steven Tay, N. H., Bell, S., Belusko, M., Jacob, R., Will, G., Saman, W., Bruno, F. 2016. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energ Rev, 53: 1411–1432.

    Google Scholar 

  • Liu, S., Iten, M., Shukla, A. 2017. Numerical study on the performance of an air—Multiple PCMs unit for free cooling and ventilation. Energ Buildings, 151: 520–533.

    Google Scholar 

  • Luo, K., Yao, F., Yi, H., Tan, H. 2015. Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials. Appl Therm Eng, 86: 238–250.

    Google Scholar 

  • Lv, S., Zhu, N., Feng, G. 2006. Impact of phase change wall room on indoor thermal environment in winter. Energ Buildings, 38: 18–24.

    Google Scholar 

  • Marín, J. M., Zalba, B., Cabeza, L. F., Mehling, H. 2005. Improvement of a thermal energy storage using plates with paraffin–graphite composite. Int J Heat Mass Tran, 48: 2561–2570.

    Google Scholar 

  • Mat, S., Al-Abidi, A. A., Sopian, K., Sulaiman, M. Y., Mohammad, A. T. 2013. Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energ Convers Manage, 74: 223–236.

    Google Scholar 

  • Medved, S., Arkar, C. 2008. Correlation between the local climate and the free-cooling potential of latent heat storage. Energ Buildings, 40: 429–437.

    Google Scholar 

  • Meng, T. 2009. Numerical simulation and experimental study for the radiative cooling. Master Dissertation. Jiangsu University, China.

    Google Scholar 

  • Mesalhy, O., Lafdi, K., Elgafy, A., Bowman, K. 2005. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energ Convers Manage, 46: 847–867.

    Google Scholar 

  • Morovat, N., Athienitis, A. K., Candanedo, J. A., Dermardiros, V. 2019. Simulation and performance analysis of an active PCM-heat exchanger intended for building operation optimization. Energ Buildings, 199: 47–61.

    Google Scholar 

  • Mosaffa, A. H., Infante Ferreira, C. A., Talati, F., Rosen, M. A. 2013. Thermal performance of a multiple PCM thermal storage unit for free cooling. Energ Convers Manage, 67: 1–7.

    Google Scholar 

  • Motahar, S., Nikkam, N., Alemrajabi, A. A., Khodabandeh, R., Toprak, M. S., Muhammed, M. 2014. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int Commun Heat Mass, 59: 68–74.

    Google Scholar 

  • Murray, R. E., Groulx, D. 2014. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging. Renew Energ, 62: 571–581.

    Google Scholar 

  • N’Tsoukpoe, K. E., Liu, H., Le Pierrès, N., Luo, L. 2009. A review on long-term sorption solar energy storage. Renew Sustain Energ Rev, 13: 2385–2396.

    Google Scholar 

  • Nagano, K., Takeda, S., Mochida, T., Shimakura, K., Nakamura, T. 2006. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage— Heat response in small scale experiments. Energ Buildings, 38: 436–446.

    Google Scholar 

  • Nicol, F. 2004. Adaptive thermal comfort standards in the hot–humid tropics. Energ Buildings, 36: 628–637.

    Google Scholar 

  • Nicol, J. F., Humphreys, M. A. 2002. Adaptive thermal comfort and sustainable thermal standards for buildings. Energ Buildings, 34: 563–572.

    Google Scholar 

  • Oró, E., Miró, L., Farid, M. M., Cabeza, L. F. 2012. Improving thermal performance of freezers using phase change materials. Int J Refrig, 35: 984–991.

    Google Scholar 

  • Osterman, E., Butala, V., Stritih, U. 2015. PCM thermal storage system for ‘free’ heating and cooling of buildings. Energ Buildings, 106: 125–133.

    Google Scholar 

  • Özonur, Y., Mazman, M., Paksoy, H. Ö., Evliya, H. 2006. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int J Energy Res, 30: 741–749.

    Google Scholar 

  • Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., Bahrampoury, R. 2017. Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. J Taiwan Inst Chem E, 81: 316–334.

    Google Scholar 

  • Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., Bahrampoury, R. 2018. Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger. Appl Math Comput, 316: 30–42.

    MathSciNet  Google Scholar 

  • Pandiyarajan, V., Chinna Pandian, M., Malan, E., Velraj, R., Seeniraj, R. V. 2011. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energ, 88: 77–87.

    Google Scholar 

  • Pasupathy, A., Velraj, R. 2008. Effect of double layer phase change material in building roof for year round thermal management. Energ Buildings, 40: 193–203.

    Google Scholar 

  • Pasupathy, A., Velraj, R., Seeniraj, R. V. 2008. Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energ Rev, 12: 39–64.

    Google Scholar 

  • Peiró, G., Gasia, J., Miró, L., Cabeza, L. F. 2015. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renew Energ, 83: 729–736.

    Google Scholar 

  • Pérez-Lombard, L., Ortiz, J., Pout, C. 2008. A review on buildings energy consumption information. Energ Buildings, 40: 394–398.

    Google Scholar 

  • Rahimi, M., Ranjbar, A. A., Ganji, D. D., Sedighi, K., Hosseini, M. J., Bahrampoury, R. 2014a. Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. Int Commun Heat Mass, 53: 109–115.

    Google Scholar 

  • Rahimi, M., Ranjbar, A. A., Ganji, D. D., Sedighi, K., Hosseini, M. J. 2014b. Experimental investigation of phase change inside a finned-tube heat exchanger. J Eng, 2014: 1–11.

    Google Scholar 

  • Raj, V. A. A., Velraj, R. 2010. Review on free cooling of buildings using phase change materials. Renew Sustain Energ Rev, 14: 2819–2829.

    Google Scholar 

  • Regin, A. F., Solanki, S. C., Saini, J. S. 2008. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew Sustain Energ Rev, 12: 2438–2458.

    Google Scholar 

  • Rice, W. J. 1984. Performance of passive and hybrid solar heating systems. Int J Ambient Energ, 5: 171–186.

    Google Scholar 

  • Riffat, S., Mempouo, B., Fang, W. 2015. Phase change material developments: a review. Int J Ambient Energ, 36: 102–115.

    Google Scholar 

  • Saman, W., Bruno, F., Halawa, E. 2005. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy, 78: 341–349.

    Google Scholar 

  • Sarı, A. 2004. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: Preparation and thermal properties. Energ Convers Manage, 45: 2033–2042.

    Google Scholar 

  • Sarı, A., Karaipekli, A. 2007. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng, 27: 1271–1277.

    Google Scholar 

  • Seddegh, S., Wang, X., Henderson, A. D. 2015a. Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system. Appl Therm Eng, 87: 698–706.

    Google Scholar 

  • Seddegh, S., Wang, X., Henderson, A. D., Xing, Z. 2015b. Solar domestic hot water systems using latent heat energy storage medium: A review. Renew Sustain Energ Rev, 49: 517–533.

    Google Scholar 

  • Sharma, A., Tyagi, V. V., Chen, C. R., Buddhi, D. 2009. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energ Rev, 13: 318–345.

    Google Scholar 

  • Sharma, S. D., Sagara, K. 2005. Latent heat storage materials and systems: A review. Int J Green Energy, 2: 1–56.

    Google Scholar 

  • Souayfane, F., Fardoun, F., Biwole, P. H. 2016. Phase change materials (PCM) for cooling applications in buildings: A review. Energ Buildings, 129: 396–431.

    Google Scholar 

  • Srivatsa, P. V. S. S., Baby, R., Balaji, C. 2014. Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins. Numer Heat Tr A: Appl, 66: 1131–1153.

    Google Scholar 

  • Stritih, U., Butala, V. 2007. Energy saving in building with PCM cold storage. Int J Energy Res, 31: 1532–1544.

    Google Scholar 

  • Sun, J., Du, P., Li, P., Zhang, Y., Li, W. 2017. The numerical simulation about energy storage process of spiral tube phase-change energy storage box. Fluid Machinery, 45: 62, 76–81. (in Chinese)

    Google Scholar 

  • Takeda, S., Nagano, K., Mochida, T., Shimakura, K. 2004. Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Sol Energy, 77: 329–338.

    Google Scholar 

  • Tan, F. L., Hosseinizadeh, S. F., Khodadadi, J. M., Fan, L. 2009. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Tran, 52: 3464–3472.

    MATH  Google Scholar 

  • Tang, R., Etzion, Y., Meir, I. A. 2004. Estimates of clear night sky emissivity in the Negev Highlands, Israel. Energ Convers Manage, 45: 1831–1843.

    Google Scholar 

  • Tao, Y. B., He, Y. L., Qu, Z. G. 2012. Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes. Sol Energy, 86: 1155–1163.

    Google Scholar 

  • Tian, Y., Zhao, C. Y. 2011. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy, 36: 5539–5546.

    Google Scholar 

  • Trp, A. 2005. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy, 79: 648–660.

    Google Scholar 

  • Turnpenny, J. R., Etheridge, D. W., Reay, D. A. 2000. Novel ventilation cooling system for reducing air conditioning in buildings. Appl Therm Eng, 20: 1019–1037.

    Google Scholar 

  • Turnpenny, J. R., Etheridge, D. W., Reay, D. A. 2001. Novel ventilation system for reducing air conditioning in buildings. Part II: Testing of prototype. Appl Therm Eng, 21: 1203–1217.

    Google Scholar 

  • Vakilaltojjar, S. M. 2000. Phase change thermal storage system for space heating and cooling. Ph.D. Dissertation. University of South Australia.

    Google Scholar 

  • Velraj, R., Seeniraj, R. V., Hafner, B., Faber, C., Schwarzer, K. 1997. Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy, 60: 281–290.

    Google Scholar 

  • Wang, W. Z., Huang, G. Q., Lu, J. 2019. Study on structure optimization and refrigeration performance of night sky radiator. Acta Energiae Solaris Sinica, 48: 1842–1849.

    Google Scholar 

  • Wang, W., Yang, X., Fang, Y., Ding, J., Yan, J. 2009. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl Energ, 86: 1196–1200.

    Google Scholar 

  • Wang, Y., Yang, X., Xiong, T., Li, W., Shah, K. W. 2017. Performance evaluation approach for solar heat storage systems using phase change material. Energ Buildings, 155: 115–127.

    Google Scholar 

  • Waqas, A., Kumar, S. 2011a. Thermal performance of latent heat storage for free cooling of buildings in a dry and hot climate: An experimental study. Energ Buildings, 43: 2621–2630.

    Google Scholar 

  • Waqas, A., Kumar, S. 2011b. Utilization of latent heat storage unit for comfort ventilation of buildings in hot and dry climates. Int J Green Energy, 8: 1–24.

    Google Scholar 

  • Waqas, A., Ud Din, Z. 2013. Phase change material (PCM) storage for free cooling of buildings—A review. Renew Sustain Energ Rev, 18: 607–625.

    Google Scholar 

  • Wu, H., Liu, Q., Bai, Z., Xie, G., Zheng, J., Su, B. 2020. Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Appl Therm Eng, 164: 114494.

    Google Scholar 

  • Wu, T., Lei, C. 2016. A review of research and development on water wall for building applications. Energ Buildings, 112: 198–208.

    Google Scholar 

  • Xiao, X., Zhang, P. 2015a. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I–Charging process. Energy, 79: 337–350.

    Google Scholar 

  • Xiao, X., Zhang, P. 2015b. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II–Discharging process. Energy, 80: 177–189.

    Google Scholar 

  • Xiong, T. 2017. Investigation of melting and solidification in a latent heat thermal energy storage unit using a helical coil heat exchanger. Master Dissertation. Chongqing University, China.

    Google Scholar 

  • Xu, B., Li, P., Chan, C. 2015. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energ, 160: 286–307.

    Google Scholar 

  • Xu, Y., He, Y., Li, Y., Song, H. 2016. Exergy analysis and optimization of charging–discharging processes of latent heat thermal energy storage system with three phase change materials. Sol Energy, 123: 206–216.

    Google Scholar 

  • Xu, Z. G., Zhao, C. Y., Ji, Y. N., Zhao, Y. 2014. State-of-the-art of phase-change thermal storage at middle-low temperature. Energy Storage Science and Technology, 3: 179–190.

    Google Scholar 

  • Yang, D., Shi, R., Wei, H., Du, J., Wang, J. 2019a. Investigation of the performance of a cylindrical PCM-to-air heat exchanger (PAHE) for free ventilation cooling in fluctuating ambient environments. Sustain Cities Soc, 51: 101764.

    Google Scholar 

  • Yang, L., Peng, H., Ling, X., Dong, H. 2015. Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit. Heat Mass Transfer, 51: 195–207.

    Google Scholar 

  • Yang, X. 2017. Matching study on the latent heat thermal energy storage device in the solar heating system using phase change material. Ph.D. Dissertation. Chongqing University, China.

    Google Scholar 

  • Yang, X., Xiong, T., Dong, J., Li, W., Wang, Y. 2017. Investigation of the dynamic melting process in a thermal energy storage unit using a helical coil heat exchanger. Energies, 10: 1129.

    Google Scholar 

  • Yang, Z., Chen, L., Li, Y., Xia, Z., Wang, C. 2019b. Numerical investigation of heat transfer characteristics in a shell-and-tube latent heat thermal energy storage system. Energy Procedia, 160: 475–482.

    Google Scholar 

  • Yun, B. Y., Yang, S., Cho, H. M., Chang, S. J., Kim, S. 2019. Design and analysis of phase change material based floor heating system for thermal energy storage. Environ Res, 173: 480–488.

    Google Scholar 

  • Zalba, B., Marín, J. M., Cabeza, L. F., Mehling, H. 2003. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl Therm Eng, 23: 251–283.

    Google Scholar 

  • Zalba, B., Marín, J. M., Cabeza, L. F., Mehling, H. 2004. Free-cooling of buildings with phase change materials. Int J Refrig, 27: 839–849.

    Google Scholar 

  • Zhang, X., Xue, Q., Zou, H., Liu, J., Tian, C., Zhang, X. 2017. Influence of heat exchanger tube layout on performance of heat pump system for electric cars. Energy Procedia, 105: 5085–5090.

    Google Scholar 

  • Zhong, Y., Guo, Q., Li, S., Shi, J., Liu, L. 2010. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energ Mat Sol C, 94: 1011–1014.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the support provided by the Science and Technology Ministry of China (SQ2019YFE011560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Luo, Y., Xu, H. et al. Review on air and water thermal energy storage of buildings with phase change materials. Exp. Comput. Multiph. Flow 3, 77–99 (2021). https://doi.org/10.1007/s42757-020-0064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0064-4

Keywords

Navigation