Skip to main content
Log in

Slug length and frequency upstream a sudden expansion in gas-liquid intermittent flow

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

The purpose of this work is to analyze the influence of a sudden expansion on the upstream behavior of the horizontal gas-liquid slug flow. Measurements were made on a 40 mm ID pipe with and without a sudden enlargement of aspect ratio σ = 0.444. The experiments were carried out with two-phase air-water mixture. The slug lengths and frequencies were measured using a non-intrusive video technique. Upstream the sudden enlargement, it was observed that the mixture velocity has no influence on slug length. The variation of slug frequency is found proportional to the liquid superficial velocity for the two cases within this study. It was also observed that the behavior of the slug length and frequency was affected by the presence of the sudden enlargement. The comparison of the results obtained with various empirical correlations available in the literature showed that the latter are not worthwhile in the case where singularity is installed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Abdulkareem, L. A. 2011. Tomographic investigation of gas-oil flow in inclined risers. Dissertation. University of Nottingham, Nottingham, UK.

    Google Scholar 

  • Al-Kayiem, H. H., Mohmmed, A. O., Al-Hashimy, Z. I., Time, R. W. 2017. Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe. Int J Heat Mass Tran, 105: 252–260.

    Google Scholar 

  • Al-Safran, E., Gokcal, B., Sarica, C. 2011. High viscosity liquid effect on two-phase slug length in horizontal pipes. In: Proceedings of the 15th International Conference on Multiphase Production Technology.

    Google Scholar 

  • Andreussi, P., Bendiksen, K. 1989. An investigation of void fraction in liquid slugs for horizontal and inclined gas-liquid pipe flow. Int J Multiphase Flow, 15: 937–946.

    Google Scholar 

  • Arabi, A. 2019. Contribution à l’étude du comportement d’un écoulement diphasique dans une conduite en présence d’une singularité. Doctoral Dissertation. USTHB, Algiers, Algeria.

    Google Scholar 

  • Arabi, A., Salhi, Y., Si-Ahmed, E. K., Legrand, J. 2018. Influence of a sudden expansion on slug flow characteristics in a horizontal two-phase flow: A pressure drop fluctuations analysis. Meccanica, 53: 3321–3338.

    Google Scholar 

  • Arabi, A., Salhi, Y., Zenati, Y., Si-Ahmed, E. K., Legrand, J. 2020. On gas-liquid intermittent flow in a horizontal pipe: Influence of sub-regime on slug frequency. Chem Eng Sci, 211. 115251.

    Google Scholar 

  • Archibong-Eso, A., Baba, Y., Aliyu, A., Zhao, Y., Yan, W., Yeung, H. 2018. On slug frequency in concurrent high viscosity liquid and gas flow. J Petrol Sci Eng, 163: 600–610.

    Google Scholar 

  • Azzopardi, B. J., Ijioma, A., Yang, S., Abdulkareem, L. A., Azzi, A., Abdulkadir, M. 2014. Persistence of frequency in gas-liquid flows across a change in pipe diameter or orientation. Int J Multiphase Flow, 67: 22–31.

    Google Scholar 

  • Barnea, D., Shoham, O., Taitel, Y., Dukler, A. E. 1980. Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory. Int J Multiphase Flow, 6: 217–225.

    Google Scholar 

  • Bendiksen, K. H., Malnes, D. 1987. Experimental data on inlet and outlet effects on the transition from stratified to slug flow in horizontal tubes. Int J Multiphase Flow, 13: 131–135.

    Google Scholar 

  • Bertola, V. 2002. Optical probe visualization of air-water flow structure through a sudden area contraction. Exp Fluids, 32: 481–486.

    Google Scholar 

  • Bertola, V., Moschella, F. 2003. Slug velocity and liquid layer thickness before an abrupt contraction in horizontal gas-liquid flow. Exp Fluids, 34: 150–153.

    Google Scholar 

  • Brill, J. P., Schmidt, Z., Coberly, W. A., Herring, J. D., Moore, D. W. 1981. Analysis of two-phase tests in large-diameter flow lines in Prudhoe Bay field. Soc Petrol Eng J, 21: 363–378.

    Google Scholar 

  • Cook, M., Behnia, M. 2000. Slug length prediction in near horizontal gas-liquid intermittent flow. Chem Eng Sci, 55: 2009–2018.

    Google Scholar 

  • Da Costa Maidana, N., Rosa, E. S. 2018. Flow disturbances induced by an orifice plate in a horizontal air-water flow in the slug regime. Exp Therm Fluid Sci, 94: 59–76.

    Google Scholar 

  • Dukler, A. E., Hubbard, M. G. 1975. A model for gas-liquid slug flow in horizontal and near horizontal tubes. Ind Eng Chem Fund, 14: 337–347.

    Google Scholar 

  • Fossa, M., Guglielmini, G., Marchitto, A. 2003. Intermittent flow parameters from void fraction analysis. Flow Meas Instrum, 14: 161–168.

    Google Scholar 

  • Fossa, M., Guglielmini, G., Marchitto, A. 2006. Two-phase flow structure close to orifice contractions during horizontal intermittent flows. Int Commun Heat Mass, 33: 698–708.

    Google Scholar 

  • Gordon, I. C. 1987. Multi-phase pipeline and equipment design for marginal and deep water field development. In: Proceedings of the 3rd International Conference on Multi-Phase Flow.

    Google Scholar 

  • Gregory, G. A., Scott, D. S. 1969. Correlation of liquid slug velocity and frequency in horizontal cocurrent gas-liquid slug flow. AIChE J, 15: 933–935.

    Google Scholar 

  • Greskovich, E. J., Shrier, A. L. 1972. Slug frequency in horizontal gas-liquid slug flow. Ind Eng Chem Proc DD, 11: 317–318.

    Google Scholar 

  • Hernandez Perez, V. 2008. Gas-liquid two-phase flow in inclined pipes. Doctoral Dissertation. University of Nottingham, Nottingham, UK.

    Google Scholar 

  • Heywood, N. I., Richardson, J. F. 1979. Slug flow of air-water mixtures in a horizontal pipe: Determination of liquid holdup by γ-ray absorption. Chem Eng Sci, 34: 17–30.

    Google Scholar 

  • Hibiki, T. 2019. One-dimensional drift-flux correlations for two-phase flow in medium-size channels. Exp Comput Multiph Flow, 1: 85–100.

    Google Scholar 

  • Ishii, M., Hibiki, T. 2010. Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer Science & Business Media.

    MATH  Google Scholar 

  • Jepson, W. P., Taylor, R. E. 1993. Slug flow and its transitions in large-diameter horizontal pipes. Int J Multiphase Flow, 19: 411–420.

    MATH  Google Scholar 

  • Manolis, I. G., Mendes-Tatsis, M. A., Hewitt, G. F. 1995. The effect of pressure on slug frequency in two-phase horizontal flow. In: Multiphase Flow 1995. Serizawa, A., Fukano, T., Bataille, J. E.s. Elsevier, 347–354.

    Google Scholar 

  • Miwa, S., Hibiki, T. 2020. State-of-the-art in plant component flow-induced vibration (FIV). Exp Comput Multiph Flow, 2: 1–12.

    Google Scholar 

  • Mohmmed, A. O., Al-Kayiem, H. H., Nasif, M. S., Time, R. W. 2019. Effect of slug flow frequency on the mechanical stress behavior of pipelines. Int J Pres Ves Pip, 172: 1–9.

    Google Scholar 

  • Nicholson, M. K., Aziz, K., Gregory, G. A. 1978. Intermittent two phase flow in horizontal pipes: Predictive models. Can J Chem Eng, 56: 653–663.

    Google Scholar 

  • Norris, L. 1982. Correlation of Prudhoe Bay liquid slug lengths and holdups including 1981 large diameter flow line tests. Exxon Production Research Co., Houston, TX, USA.

    Google Scholar 

  • Nydal, O. J. 1991. An experimental investigation on slug flow. Doctoral Dissertation. Univesity of Oslo, Norway.

    Google Scholar 

  • Saidj, F., Kibboua, R., Azzi, A., Ababou, N., Azzopardi, B. J. 2014. Experimental investigation of air-water two-phase flow through vertical 90° bend. Exp Therm Fluid Sci, 57: 226–234.

    Google Scholar 

  • Salhi, Y. 2010. Contribution théorique et expérimentale à l'étude des phénomènes de transition d'un écoulement stratifié à l'écoulement poche/bouchon dans une conduite horizontale en présence de singularité. Doctoral Dissertation. USTHB, Algiers, Algeria.

    Google Scholar 

  • Salhi, Y., Si-Ahmed, E. K., Legrand, J., Degrez, G. 2010. Stability analysis of inclined stratified two-phase gas-liquid flow. Nucl Eng Des, 240: 1083–1096

    Google Scholar 

  • Salhi, Y., Si-Ahmed, E. K., Legrand, J., Rosant, J. M. 2011. Etude expérimentale de l'influence d'une singularité sur le régime d'écoulement diphasique gaz-liquide en conduite horizontale: cas de l'élargissement brusque. In: Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc, 9240. Courbevoie, France.

    Google Scholar 

  • Scott, S. L., Shoham, O., Brill, J. P. 1989. Prediction of slug length in horizontal, large-diameter pipes. SPE Production Engineering, 4: 335–340.

    Google Scholar 

  • Taitel, Y., Barnea, D. 1990. Two-phase slug flow. Adv Heat Tran, 20: 83–132.

    Google Scholar 

  • Thaker, J., Banerjee, J. 2016a. Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe. J Petrol Sci Eng, 145: 298–320.

    Google Scholar 

  • Thaker, J., Banerjee, J. 2016b. On intermittent flow characteristics of gas-liquid two-phase flow. Nucl Eng Des, 310: 363–377.

    Google Scholar 

  • Thaker, J., Banerjee, J. 2017. Transition of plug to slug flow and associated fluid dynamics. Int J Multiphase Flow, 91: 63–75.

    Google Scholar 

  • Wang, X., Guo, L., Zhang, X. 2007. An experimental study of the statistical parameters of gas-liquid two-phase slug flow in horizontal pipeline. Int J Heat Mass Tran, 50: 2439–2443.

    Google Scholar 

  • Zabaras, G. J. 2000. Prediction of slug frequency for gas/liquid flows. SPE J, 5: 252–258.

    Google Scholar 

  • Zhang, D., Goharzadeh, A. 2019. Effect of sudden expansion on two-phase flow in a horizontal pipe. Fluid Dyn, 54: 123–136.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by SONATRACH under project No. SH-U.S.T.H.B. RD N°1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitouni, A.H., Arabi, A., Salhi, Y. et al. Slug length and frequency upstream a sudden expansion in gas-liquid intermittent flow. Exp. Comput. Multiph. Flow 3, 124–130 (2021). https://doi.org/10.1007/s42757-020-0068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0068-0

Keywords

Navigation