Skip to main content
Log in

Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—From nanoscale to macroscale

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

This paper presents a review of the latest experimental and theoretical studies on enhancing boiling/evaporative heat transfer using nanofabricated porous coatings, with potential applications in the fields of electronics thermal management. It is proposed that the key to enhanced heat transfer lies in optimal design of nanostructures that can activate a reduced/negative pressure through nanoscale evaporation, allow continuous liquid microflow through the porous nanostructures, and facilitate bubble release from the coating. In this point of view, a multiscale predictive approach that covers a wide size range from nanoscale to the system size is critical. We propose this can be achieved by combing Molecular Dynamics (MD) simulations, the Lattice Boltzmann Method (LBM), and Two-Fluid Model (TFM) in a coupled way, with the MD addressing the generation of negative pressure, LBM modelling the liquid microflow, and TFM simulating the two-phase coolant flows. The comprehensive modelling strategy will provide a mechanistic all-in-one simulation of the complex multiscale process, and greatly boost the design of optimal nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Ball, P. 2012. Computer engineering: Feeling the heat. Nature, 492: 492–174.

    Google Scholar 

  • Barber, J., Brutin, D., Tadrist, L. 2011. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett, 6: 280.

    Article  Google Scholar 

  • Coursey, J. S., Kim, J. 2008. Nanofluid boiling: The effect of surface wettability. Int J Heat Fluid Fl, 29: 29–1577.

    Article  Google Scholar 

  • Dong, L., Quan, X., Cheng, P. 2014. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Tran, 71: 71–189.

    Article  Google Scholar 

  • Duan, C., Karnik, R., Lu, M. C., Majumdar, A. 2012. Evaporation-induced cavitation in nanofluidic channels. PNAS, 109: 109–3688.

    Google Scholar 

  • El-Genk, M. S., Parker, J. L. 2004. Pool boiling in saturated and subcooled HFE-7100 dielectric fluid from a porous graphite surface. In: Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1: 655–662.

  • Ganapathy, H., Sajith, V. 2013. Semi-analytical model for pool boiling of nanofluids. Int J Heat Mass Tran, 57: 57–32.

    Article  Google Scholar 

  • Gerardi, C., Buongiorno, J., Hu, L., McKrell, T. 2010. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. Int J Heat Mass Tran, 53: 53–4185.

    Article  Google Scholar 

  • Gong, S., Cheng, P. 2012. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int J Heat Mass Tran, 55: 55–4923.

    Article  Google Scholar 

  • Gong, S., Cheng, P. 2015. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int J Heat Mass Tran, 80: 80–206.

    Article  Google Scholar 

  • Hamidnia, M., Luo, Y., Wang, X. D. 2018. Application of micro/nano technology for thermal management of high power LED packaging—A review. Appl Therm Eng, 145: 145–637.

    Article  Google Scholar 

  • Hanks, D. F., Lu, Z., Sircar, J., Salamon, T. R., Antao, D. S., Bagnall, K. R., Barabadi, B., Wang, E. N. 2018. Nanoporous membrane device for ultra high heat flux thermal management. Microsyst Nanoeng, 4: 1.

    Article  Google Scholar 

  • Hayashi, H. 2003. Lattice Boltzmann method and its application to flow analysis in porous media. R&D Review of Toyota CRDL, 38: 38–17.

    Google Scholar 

  • Khan, N., Pinjala, D., Toh, K. C. 2004. Pool boiling heat transfer enhancement by surface modification/micro-structures for electronics cooling: A review. In: Proceedings of the 6th Electronics Packaging Technology Conference, 273–280.

  • Kim, B. S., Shin, S., Lee, D., Choi, G., Lee, H., Kim, K. M., Cho, H. H. 2014. Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer. Int J Heat Mass Tran, 70: 70–23.

    Google Scholar 

  • Kim, D. E., Yu, D. I., Jerng, D. W., Kim, M. H., Ahn, H. S. 2015. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp Therm Fluid Sci, 66: 66–173.

    Article  Google Scholar 

  • Kim, S. J., Bang, I. C., Buongiorno, J., Hu, L. W. 2006. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 89: 153107.

    Article  Google Scholar 

  • Kurul, N., Podowski, M. Z. 1990. Multidimensional effects in forced-convection subcooled boiling. In: Proceedings of the 9th International Heat Transfer Conference, 21–26.

  • Léal, L., Miscevic, M., Lavieille, P., Amokrane, M., Pigache, F., Topin, F., Nogarède, B., Tadrist, L. 2013. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. Int J Heat Mass Tran, 61: 61–505.

    Article  Google Scholar 

  • Lee, C. Y., Hossain Bhuiya, M. M., Kim, K. J. 2010. Pool boiling heat transfer with nano-porous surface. Int J Heat Mass Tran, 53: 53–4274.

    Google Scholar 

  • Li, C., Wang, Z., Wang, P. I., Peles, Y., Koratkar, N., Peterson, G. P. 2008a. Nanostructured copper interfaces for enhanced boiling. Small, 4: 4–1084.

    Google Scholar 

  • Li, Q., Luo, K. H., Kang, Q. J., He, Y. L., Chen, Q., Liu, Q. 2016. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energ Combust, 52: 52–62.

    Article  Google Scholar 

  • Li, S., Furberg, R., Toprak, M. S., Palm, B., Muhammed, M. 2008b. Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Funct Mater, 18: 18–2215.

    Google Scholar 

  • Li, X., Cole, I., Tu, J. 2019. A review of nucleate boiling on nanoengineered surfaces—The nanostructures, phenomena and mechanisms. Int J Heat Mass Tran, 141: 141–20.

    Google Scholar 

  • Li, X., Wang, R., Huang, R., Shi, Y. 2006. Numerical investigation of boiling flow of nitrogen in a vertical tube using the two-fluid model. Appl Therm Eng, 26: 26–2425.

    Google Scholar 

  • Li, X., Wang, R., Huang, R., Shi, Y. 2007. Numerical and experimental investigation of pressure drop characteristics during upward boiling two-phase flow of nitrogen. Int J Heat Mass Tran, 50: 50–1971.

    MATH  Google Scholar 

  • Li, X., Wei, W., Wang, R., Shi, Y. 2009. Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling flow of liquid nitrogen. Int J Heat Mass Tran, 52: 52–1510.

    Google Scholar 

  • Li, X., Yan, Y., Shang, Y., Tu, J. 2015a. An Eulerian-Eulerian model for particulate matter transport in indoor spaces. Build Environ, 86: 86–191.

    Article  Google Scholar 

  • Li, X., Yuan, Y., Tu, J. 2015b. A parametric study of the heat flux partitioning model for nucleate boiling of nanofluids. Int J Therm Sci, 98: 98–42.

    Google Scholar 

  • Maroo, S. C., Chung, J. N. 2011. Negative pressure characteristics of an evaporating meniscus at nanoscale. Nanoscale Res Lett, 6: 72.

    Article  Google Scholar 

  • Maroo, S. C., Chung, J. N. 2013. Fundamental roles of nonevaporating film and ultrahigh heat flux associated with nanoscale meniscus evaporation in nucleate boiling. J Heat Transfer, 135: 061501.

    Article  Google Scholar 

  • McNamara, G. R., Zanetti, G. 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett, 61: 61–2332.

    Article  Google Scholar 

  • Nadjahi, C., Louahlia, H., Lemasson, S. 2018. A review of thermal management and innovative cooling strategies for data center. Sustain Comput: Infor, 19: 19–14.

    Google Scholar 

  • Shojaeian, M., Koşar, A. 2015. Pool boiling and flow boiling on micro-and nanostructured surfaces. Exp Therm Fluid Sci, 63: 63–45.

    Article  Google Scholar 

  • Stutz, B., Morceli, C. H. S., de Fátima da Silva, M., Cioulachtjian, S., Bonjour, J. 2011. Influence of nanoparticle surface coating on pool boiling. Exp Therm Fluid Sci, 35: 35–1239.

    Article  Google Scholar 

  • Waldrop, M. M. 2016. The chips are down for Moore’s law. Nature, 530: 530–144.

    Article  Google Scholar 

  • Wheeler, T. D., Stroock, A. D. 2008. The transpiration of water at negative pressures in a synthetic tree. Nature, 455: 455–208.

    Article  Google Scholar 

  • Yao, Z., Lu, Y. W., Kandlikar, S. G. 2011. Effects of nanowire height on pool boiling performance of water on silicon chips. Int J Therm Sci, 50: 50–2084.

    Article  Google Scholar 

  • Yeom, H., Sridharan, K., Corradini, M. L. 2015. Bubble dynamics in pool boiling on nanoparticle-coated surfaces. Heat Transfer Eng, 36: 36–1013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X. Multiscale modelling of nucleate boiling on nanocoatings for electronics cooling—From nanoscale to macroscale. Exp. Comput. Multiph. Flow 3, 233–241 (2021). https://doi.org/10.1007/s42757-020-0086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0086-y

Keywords

Navigation