Skip to main content
Log in

Multigrid Methods for Time-Fractional Evolution Equations: A Numerical Study

  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this work, we develop an efficient iterative scheme for a class of nonlocal evolution models involving a Caputo fractional derivative of order \(\alpha (0,1)\) in time. The fully discrete scheme is obtained using the standard Galerkin method with conforming piecewise linear finite elements in space and corrected high-order BDF convolution quadrature in time. At each time step, instead of solving the linear algebraic system exactly, we employ a multigrid iteration with a Gauss–Seidel smoother to approximate the solution efficiently. Illustrative numerical results for nonsmooth problem data are presented to demonstrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bramble, J.H., Pasciak, J.E., Sammon, P.H., Thomée, V.: Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52(186), 339–367 (1989)

    Article  MathSciNet  Google Scholar 

  2. Bramble, J.H., Sammon, P.H.: Efficient higher order single step methods for parabolic problems. I. Math. Comput. 35(151), 655–677 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  4. Douglas Jr., J., Dupont, T., Ewing, R.E.: Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem. SIAM J. Numer. Anal. 16(3), 503–522 (1979)

    Article  MathSciNet  Google Scholar 

  5. Du, Q., Ming, P.: Cascadic multigrid methods for parabolic problems. Sci. China Ser. A 51(8), 1415–1439 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gaspar, F.J., Rodrigo, C.: Multigrid waveform relaxation for the time-fractional heat equation. SIAM J. Sci. Comput. 39(4), A1201–A1224 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin (1985)

    Book  Google Scholar 

  8. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, second edn. Springer, Berlin (1996). (stiff and differential-algebraic problems)

    Book  Google Scholar 

  9. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  10. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

    Article  MathSciNet  Google Scholar 

  11. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Li, B., Zhou, Z.: Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138(1), 101–131 (2018)

    Article  MathSciNet  Google Scholar 

  13. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comput. 88(319), 2157–2186 (2019)

    Article  MathSciNet  Google Scholar 

  14. Jin, B., Zhou, Z.: Incomplete iterative solution of subdiffusion. Preprint. arXiv:1906.06497 (2019)

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)

    MATH  Google Scholar 

  16. Lin, X.-L., Lu, X., Ng, M.K., Sun, H.-W.: A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 323, 204–218 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  18. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  19. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  20. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems, second edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  22. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  24. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, second edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)

    Book  Google Scholar 

  26. Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)

    Article  MathSciNet  Google Scholar 

  27. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zhou.

Appendix A: Proof of Theorem 2.3

Appendix A: Proof of Theorem 2.3

Proof

In a customary way, we split the error \(e^{n,m}=U_h^{n,m}-u(t_n)\) into

$$\begin{aligned} e^{n,m}= (U_h^{n,m}-R_h u(t_n)) + (R_h u(t_n)-u(t_n)) =: \vartheta ^n + \varrho ^n. \end{aligned}$$

In view of (12), it suffices to bound \(\vartheta ^n\). Note that \(\vartheta ^n\) satisfies \(\vartheta ^0=0\) and

$$\begin{aligned}&{\bar{\partial }}_\tau ^\alpha \vartheta ^n + A_h\vartheta ^n = ({\bar{\partial }}_\tau ^\alpha (U_h^{n,m}-v_h)+ A_hU_h^{n,m}) -{\bar{\partial }}_\tau ^\alpha (R_hu(t_n)-v_h) - A_hR_hu(t_n), \\&\quad n=1,\cdots ,N. \end{aligned}$$

Let the auxiliary function \({\bar{U}}_h^n\in X_h\) satisfy \({\bar{U}}_h^0 = R_hv\) and

$$\begin{aligned} \tau ^{-\alpha } \left( {\bar{U}}_h^n + \sum _{j=1}^n b_{n-j}^{(\alpha )} U_h^{j,m} - \sum _{j=0}^n b_{n-j}^{(\alpha )} U_h^0\right) + A_h \bar{U}_h^n = f_h^n,\quad n=1,2,\cdots ,N. \end{aligned}$$

This together with the identities (4), (1) and (9) implies

$$\begin{aligned} {\bar{\partial }}_\tau ^\alpha \vartheta ^n + A_h \vartheta ^n= \sigma ^n \quad {\text {with }} \ \sigma ^n = (I+\tau ^\alpha A_h) \eta ^n + \omega ^n, \end{aligned}$$
(A1)

with the errors \(\eta ^n\) and \(\omega ^n\) given by

$$\begin{aligned} \eta ^n&=\tau ^{-\alpha } (U_h^{n,m} - {\bar{U}}_h^n) \quad \text {and} \nonumber \\ \omega ^n&= ( P_h - R_h ) {\partial _t^\alpha }(u(t_n)-v) - R_h ({\bar{\partial }}_\tau ^\alpha - {\partial _t^\alpha })(u(t_n)-v). \end{aligned}$$
(A2)

By the discrete maximal \(\ell ^p\) regularity in Lemma 2.1 and the triangle inequality, for any \(q\in (\frac{2}{\alpha },\infty )\) and \(n=1,2,\cdots ,N\), we have

$$\begin{aligned} \Vert \vartheta ^n \Vert _{L^2(\Omega )}&\le c\Vert (A_h^{-\frac{1}{2}}\sigma ^j)_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))} \\&\le c\Vert ((I+\tau ^{\alpha } A_h)A_h^{-\frac{1}{2}}\eta ^{j})_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))} + c\Vert (A_h^{-\frac{1}{2}}\omega ^j)_{j=1}^n\Vert _{\ell ^q((\Omega ))}. \end{aligned}$$

Since u is sufficiently smooth, (13) and (14) imply

$$\begin{aligned} \Vert A_h^{-\frac{1}{2}}\omega ^j\Vert _{L^2(\Omega )}\le c\Vert \omega ^j\Vert _{L^2(\Omega )}\le c(u)(h^2+\tau ^k). \end{aligned}$$

Further, direct computation gives

$$\begin{aligned} \Vert (I+\tau ^\alpha A_h)A_h^{-\frac{1}{2}}\eta ^j\Vert _{L^2(\Omega )} \le c|\eta ^j|. \end{aligned}$$
(A3)

The preceding three estimates imply (with \(|\cdot |_X=|\cdot |\))

$$\begin{aligned} \Vert \vartheta ^n \Vert _{L^2(\Omega )} \le c \Vert (\eta ^{j})_{j=1}^n\Vert _{\ell ^q(X)} + c(u) (h^2 + \tau ^k). \end{aligned}$$
(A4)

Next, we find a bound of the summand \(|\eta ^j|\). Given a tolerance \(\delta >0\) to be determined, under assumption (11), there exists an \(m\in {\mathbb {N}}\) such that \(c_0 \kappa ^m \le \delta \) and by the triangle inequality

$$\begin{aligned} |U_h^{n,m} - {\bar{U}}_h^n| \le \delta |U_h^{n,0}-{\bar{U}}_h^n| \le \delta ( |U_h^{n,0} - U_h^{n,m}| + |U_h^{n,m} - {\bar{U}}_h^n | ). \end{aligned}$$

With \(\epsilon =\delta (1-\delta )^{-1}\), rearranging the inequality gives \(|U_h^{n,m} - {\bar{U}}_h^n| \le \epsilon |U_h^{n,0} - U_h^{n,m} |\). Hence,

$$\begin{aligned} |\eta ^n| = \tau ^{-\alpha } |U_h^{n,m} - {\bar{U}}_h^n| \le \epsilon \tau ^{-\alpha } |U_h^{n,0} - U_h^{n,m} |. \end{aligned}$$

Meanwhile, the choice of \(U_h^{n,0}\) in (8) and the triangle inequality imply

$$\begin{aligned} |U_h^{n,m} - U_h^{n,0}| \le \tau ^{k+1} |{\tilde{\partial }}_\tau ^{k+1} \theta ^{n}| + \tau ^{k+1}|{\tilde{\partial }}_\tau ^{k+1} R_h u(t_n)| , \end{aligned}$$

where \({\tilde{\partial }}_\tau ^{k+1}\) denotes the \((k+1)\)th backward difference approximation (of the backward Euler type). The last two estimates together with the inverse inequality (in time) imply

$$\begin{aligned} \Vert (\eta ^{j})_{j=1}^n\Vert _{\ell ^q(X)}&\le c\epsilon \tau ^{1-\alpha }\Vert ({\bar{\partial }}_\tau \theta ^j)_{j=1}^n\Vert _{\ell ^q(X)} + c\epsilon \tau ^{k+1-\alpha }\Vert u\Vert _{C^{k+1}([0,T];H_0^1(\Omega ))} \nonumber \\&\le c\epsilon \Vert ({\bar{\partial }}_\tau ^\alpha \theta ^j)_{j=1}^n\Vert _{\ell ^q(X)} + c\epsilon \tau ^{k+1-\alpha }\Vert u\Vert _{C^{k+1}([0,T];H_0^1(\Omega ))}. \end{aligned}$$
(A5)

Let \(I_h=(I+\tau ^{\alpha } A_h)^{-\frac{1}{2}}\). Then, the identity

$$\begin{aligned} |{\bar{\partial }}_\tau ^\alpha \vartheta ^j|= \Vert (I+\tau ^{\alpha } A_h) {\bar{\partial }}_\tau ^\alpha I_h\vartheta ^j\Vert _{L^2(\Omega )} \end{aligned}$$

and the triangle inequality imply

$$\begin{aligned} \Vert ({\bar{\partial }}_\tau ^\alpha \vartheta ^j)_{j=1}^n\Vert _{\ell ^q(X)}&\le \Vert ( {\bar{\partial }}_\tau ^\alpha I_h\vartheta ^j)_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))} + \tau ^\alpha \Vert ({\bar{\partial }}_\tau ^\alpha A_hI_h\vartheta ^j)_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))} \\&:=\mathrm{I}+\mathrm{II} . \end{aligned}$$

By the discrete maximal \(\ell ^p\) regularity in Lemma 2.1, we have

$$\begin{aligned} \mathrm{I}&\le c\Vert (I_h\sigma ^j)_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))}, \end{aligned}$$

and similarly, the inverse inequality (in time) and discrete maximal \(\ell ^p\) regularity yield

$$\begin{aligned} \mathrm{II}&\le c\Vert (A_hI_h\vartheta ^j)_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))} \le c\Vert (I_h\sigma ^j)_{j=1}^n\Vert _{\ell ^q(L^2(\Omega ))}. \end{aligned}$$

Combining the preceding three estimates with (A1), and the errors (13) and (14) gives

$$\begin{aligned} \Vert ({{\bar{\partial}}_{\tau}^{\alpha} \vartheta^{j})}_{j=1}^{n}\Vert_{\ell ^q(X)} \le c(u) (\tau +h^2) + c\epsilon \Vert ({{\bar{\partial}}_{\tau}^{\alpha}\theta^{j})}_{j=1}^n\Vert _{\ell ^q(X)}. \end{aligned}$$
(A6)

Now, it follows from (A5) and (A6) that

$$\begin{aligned} \Vert ({\bar{\partial }}_\tau ^\alpha \vartheta ^j)_{j=1}^n\Vert _{\ell ^q(X)} \le c(u) (\tau +h^2) + c\epsilon \Vert ({\bar{\partial }}_\tau ^\alpha \theta ^j)_{j=1}^n\Vert _{\ell ^q(X)}. \end{aligned}$$

Thus, by choosing a sufficiently small \(\epsilon \), we get

$$\begin{aligned} \Vert ({\bar{\partial }}_\tau ^\alpha \vartheta ^j)_{j=1}^n\Vert _{\ell ^q(X)} \le c(u) (\tau +h^2). \end{aligned}$$

This, (A4) and (A5) give \(\Vert \vartheta ^n \Vert _{L^2(\Omega )} \le c(u) (\tau +h^2)\), which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, B., Zhou, Z. Multigrid Methods for Time-Fractional Evolution Equations: A Numerical Study. Commun. Appl. Math. Comput. 2, 163–177 (2020). https://doi.org/10.1007/s42967-019-00042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00042-9

Keywords

Mathematics Subject Classification

Navigation