Skip to main content

Robustness of Intelligent Vehicular Rerouting Towards Non-ideal Communication Delay

  • Conference paper
  • First Online:
Advances in Information and Communication Networks (FICC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 886))

Included in the following conference series:

  • 1068 Accesses

Abstract

One of the main goals of Intelligent Transport Systems (ITSs) is to optimize traffic flow for the sake of saving fuel, decreasing travel time and/or reducing congestion. In order to achieve this goal, most of the numerous approaches from literature require some kind of information exchange between vehicles and the environment. Vehicles on the one hand need to provide data containing predicates, such as current velocity, position or route destination. On the other hand, a router needs a functional communication infrastructure to contribute route guidance to vehicles which are affected by traffic jams. However, variable delay or complete message loss can influence the rerouting performance significantly, since either route advices could fail to reach their recipient, or the supposed knowledge of the road conditions could be outdated. The delay requirements of various routers may be divergent, and therefore we propose two delay models which are independent of the underlying communication standard. Furthermore, this paper evaluates the existing PCMA* routing algorithm concerning its performance with varying delays and message loss probabilities by applying the introduced delay models in microscopic traffic simulations. We define constraints of both the delay and message loss probability which are required to achieve certain improvements ensuing from intelligent rerouting. The results further reveal a high robustness of the algorithm with regard to delays and message loss probabilities, which expresses itself by similarly low achieved average vehicle travel times for a large amount of the investigated simulation setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, Z., Wakahara, Y.: Real-time urban traffic amount prediction models for dynamic route guidance systems. EURASIP J. Wirel. Commun. Netw. 2014(1), 85 (2014)

    Article  Google Scholar 

  2. Li, Y., Ren, W., Jin, D., Hui, P., Zeng, L., Wu, D.: Potential predictability of vehicular staying time for large-scale urban environment. IEEE Trans. Veh. Technol. 63(1), 322–333 (2014)

    Article  Google Scholar 

  3. Gramaglia, M., Calderon, M., Bernardos, C.: ABEONA monitored traffic: VANET-assisted cooperative traffic congestion forecasting. IEEE Veh. Technol. Mag. 9(2), 50–57 (2014)

    Article  Google Scholar 

  4. Chan, K.Y., Dillon, T., Chang, E.: An intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems. IEEE Trans. Ind. Electron. 60(10), 4714–4725 (2013)

    Article  Google Scholar 

  5. Daraghmi, Y.-A., Yi, C.-W., Chiang, T.-C.: Negative binomial additive models for short-term traffic flow forecasting in urban areas. IEEE Trans. Intell. Transp. Syst. 15(2), 784–793 (2014)

    Article  Google Scholar 

  6. Nafi, N., Khan, R., Khan, J., Gregory, M.: A predictive road traffic management system based on vehicular ad-hoc network. In: 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC), pp. 135–140, November 2014

    Google Scholar 

  7. Cao, Z., Jiang, S., Zhang, J., Guo, H.: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion. IEEE Trans. Intell. Transp. Syst. 18(7), 1958–1973 (2016)

    Article  Google Scholar 

  8. Kim, K., Kwon, M., Park, J., Eun, Y.: Dynamic vehicular route guidance using traffic prediction information. Mob. Inf. Syst. 2016, e3727865 (2016)

    Google Scholar 

  9. 3GPP: Release 14, June 2017

    Google Scholar 

  10. Bilstrup, K.: A survey regarding wireless communication standards intended for a high-speed vehicle environment. Halmstad University (2007)

    Google Scholar 

  11. Zhang, B., Ma, M., Liu, C., Shu, Y.: Delay guaranteed MDP scheduling scheme for HCCA based on 802.11p protocol in V2R environments. Int. J. Commun. Syst. 30, e3307 (2017)

    Article  Google Scholar 

  12. Zafar, B.A., Ouni, S., Boulila, N., Saidane, L.: Communication delay guarantee for IEEE 802.11 p/wave Vehicle networks with RSU control. In: 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), pp. 1–7. IEEE (2016)

    Google Scholar 

  13. Madueño, G.C., Pratas, N.K., Stefanović, E., Popovski, P.: Massive M2M access with reliability guarantees in LTE systems. In: 2015 IEEE International Conference on Communications (ICC), pp. 2997–3002. IEEE (2015)

    Google Scholar 

  14. Chen, X., Zhang, Z., Yuen, C.: Resource allocation for cost minimization in limited feedback MU-MIMO systems with delay guarantee. IEEE Syst. J. 9(4), 1229–1236 (2015)

    Article  Google Scholar 

  15. Hameed Mir, Z., Filali, F.: LTE and IEEE 802.11p for vehicular networking: a performance evaluation. EURASIP J. Wirel. Commun. Netw. 2014(1), 89 (2014). http://jwcn.eurasipjournals.com/content/2014/1/89

  16. Backfrieder, C., Ostermayer, G., Mecklenbräuker, C.F.: Increased Traffic flow through node-based bottleneck prediction and V2X communication. IEEE Trans. Intell. Transp. Syst. 18(2), 349–363 (2017)

    Article  Google Scholar 

  17. Barth, M., Boriboonsomsin, K., Vu, A.: Environmentally-friendly navigation. In: 2007 IEEE Intelligent Transportation Systems Conference, ITSC 2007, pp. 684–689. IEEE (2007)

    Google Scholar 

  18. Videtich, M.: Receiving traffic update information and reroute information in a mobile vehicle. US Patent 7,062,379, 13 June 2006. https://www.google.com/patents/US7062379

  19. Blokpoel, R., Vreeswijk, J., Leistner, D.: Micro-routing using accurate traffic predictions. IET Intell. Transp. Syst. 6(4), 380–387 (2012)

    Article  Google Scholar 

  20. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)

    Article  Google Scholar 

  21. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem. Oper. Res. 22(2), 340–349 (1974)

    Article  Google Scholar 

  22. Abdulkader, M.M., Gajpal, Y., ElMekkawy, T.Y.: Hybridized ant colony algorithm for the multi compartment vehicle routing problem. Appl. Soft Comput. 37, 196–203 (2015)

    Article  Google Scholar 

  23. Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)

    Article  Google Scholar 

  24. Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput. Oper. Res. 52, 269–281 (2014)

    Article  MathSciNet  Google Scholar 

  25. Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-swarm optimization for dynamic combinatorial problems: a case study on dynamic vehicle routing problem. In: ANTS Conference, vol. 6234, pp. 227–238. Springer (2010)

    Google Scholar 

  26. Kaiwartya, O., Kumar, S., Lobiyal, D.K., Tiwari, P.K., Abdullah, A.H., Hassan, A.N.: Multiobjective dynamic vehicle routing problem and time seed based solution using particle swarm optimization. J. Sens. 2015, 1–14 (2015)

    Article  Google Scholar 

  27. Chen, A.-L., Yang, G.-K., Wu, Z.-M.: Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J. Zhejiang Univ. Sci. A 7(4), 607–614 (2006)

    Article  Google Scholar 

  28. Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)

    Article  Google Scholar 

  29. Bilstrup, K., Uhlemann, E., Ström, E., Bilstrup, U.: On the ability of the 802.11 p MAC method and STDMA to support real-time vehicle-to-vehicle communication. EURASIP J. Wirel. Commun. Netw. 2009(1), 902414 (2009). http://link.springer.com/article/10.1155/2009/902414

    Article  Google Scholar 

  30. Bilstrup, K., Uhlemann, E., Strom, E.G., Bilstrup, U.: Evaluation of the IEEE 802.11 p MAC method for vehicle-to-vehicle communication. In: IEEE 68th Vehicular Technology Conference, VTC 2008-Fall, pp. 1–5. IEEE (2008). http://ieeexplore.ieee.org/abstract/document/4657278/

  31. Jerbi, M., Senouci, S.-M., Rasheed, T., Ghamri-Doudane, Y.: Towards efficient geographic routing in urban vehicular networks. IEEE Trans. Veh. Technol. 58(9), 5048–5059 (2009). http://ieeexplore.ieee.org/abstract/document/5061874/

    Article  Google Scholar 

  32. Taleb, T., Ochi, M., Jamalipour, A., Kato, N., Nemoto, Y.: An efficient vehicle-heading based routing protocol for VANET networks. In: 2006 IEEE Wireless Communications and Networking Conference, WCNC 2006, vol. 4, pp. 2199–2204. IEEE (2006). http://ieeexplore.ieee.org/abstract/document/1696637/

  33. Borsetti, D., Gozalvez, J.: Infrastructure-assisted geo-routing for cooperative vehicular networks. In: 2010 IEEE Vehicular networking conference (VNC), pp. 255–262. IEEE (2010). http://ieeexplore.ieee.org/abstract/document/5698271/

  34. Sondi, P., Wahl, M., Rivoirard, L., Cohin, O.: Performance evaluation of 802.11 p-based ad hoc vehicle-to-vehicle communications for usual applications under realistic urban mobility. IInt. J. Adv. Comput. Sci. Appl. IJACSA 7(5), p221–230 (2016)

    Google Scholar 

  35. Ucar, S., Ergen, S.C., Ozkasap, O.: Multihop-cluster-based IEEE 802.11 p and LTE hybrid architecture for VANET safety message dissemination. IEEE Trans. Veh. Technol. 65(4), 2621–2636 (2016). http://ieeexplore.ieee.org/abstract/document/7081788/

    Article  Google Scholar 

  36. Toor, Y., Muhlethaler, P., Laouiti, A.: Vehicle ad hoc networks: applications and related technical issues. IEEE Commun. Surv. Tutor. 10(3) (2008). http://ieeexplore.ieee.org/abstract/document/4625806/

    Article  Google Scholar 

  37. Elbery, A., Rakha, H., Elnainay, M., Drira, W., Filali, F.: Eco-routing using V2I communication: system evaluation. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 71–76. IEEE (2015). http://ieeexplore.ieee.org/abstract/document/7313112/

  38. Santa, J., Pereñguez, F., Moragón, A., Skarmeta, A.F.: Experimental evaluation of CAM and DENM messaging services in vehicular communications. Transp. Res. Part C Emerg. Technol. 46, 98–120 (2014). http://www.sciencedirect.com/science/article/pii/S0968090X14001193

    Article  Google Scholar 

  39. Chan, K.: Future Communication Technology and Engineering: Proceedings of the 2014 International Conference on Future Communication Technology and Engineering (FCTE 2014), Shenzhen, China, 16–17 November 2014. CRC Press, Boca Raton (2015). Google-Books-ID: Oo7YCQAAQBAJ

    Google Scholar 

  40. T. ETSI, 102 637-3 (2010): Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service. Technical Specification V1, vol. 1 (2010)

    Google Scholar 

  41. Backfrieder, C., Ostermayer, G., Mecklenbräuker, C.F.: TraffSim - a traffic simulator for investigations of congestion minimization through dynamic vehicle rerouting. ResearchGate 15(4), 38–47 (2014)

    Google Scholar 

  42. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1928), 4585–4605 (2010). http://rsta.royalsocietypublishing.org/content/368/1928/4585

    Article  Google Scholar 

  43. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec. J. Transp. Res. Board 1999, 86–94 (2007). http://trrjournalonline.trb.org/doi/abs/10.3141/1999-10

    Article  Google Scholar 

  44. Backfrieder, C., Ostermayer, G., Lindorfer, M., Mecklenbräuker, C.F.: Cooperative lane-change and longitudinal behaviour model extension for TraffSim. In: Alba, E., Chicano, F., Luque, G. (eds.) Smart Cities. Lecture Notes in Computer Science, pp. 52–62. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39595-1_6

    Chapter  Google Scholar 

  45. Backfrieder, C., Ostermayer, G.: Modeling a continuous and accident-free intersection control for vehicular traffic in TraffSim. In: 2014 European Modelling Symposium, pp. 332–337, October 2014

    Google Scholar 

  46. Treiber, M., Kesting, A.: Fuel consumption and emissions. In: Treiber, M., Kesting, A. (eds.) Traffic Flow Dynamics. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  47. Lindorfer, M., Backfrieder, C., Kieslich, C., Krösche, J., Ostermayer, G.: Environmental-sensitive generation of street networks for traffic simulations. In: 2013 European Modelling Symposium, pp. 457–462, November 2013

    Google Scholar 

Download references

Acknowledgment

This project has been co-financed by the European Union using financial means of the European Regional Development Fund (EFRE). Further information to IWB/EFRE is available at www.efre.gv.at.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Backfrieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Backfrieder, C., Lindorfer, M., Mecklenbräuker, C.F., Ostermayer, G. (2019). Robustness of Intelligent Vehicular Rerouting Towards Non-ideal Communication Delay. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication Networks. FICC 2018. Advances in Intelligent Systems and Computing, vol 886. Springer, Cham. https://doi.org/10.1007/978-3-030-03402-3_11

Download citation

Publish with us

Policies and ethics