Skip to main content

Quantum Adiabatic Evolution with a Special Kind of Interpolating Paths

  • Conference paper
  • First Online:
Advances in Information and Communication Networks (FICC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 887))

Included in the following conference series:

  • 939 Accesses

Abstract

We study a special kind of interpolating paths in quantum adiabatic search algorithms. With this special kind of adiabatic paths, notably we find that even when the parameter n within it tends to infinity, the adiabatic evolution would be a failure if the initial state is orthogonal to the final target state. But superficially, it seems that the minimum gap of the quantum system happening at the end of the computation would not affect the validity of the algorithm, since each ground state of the problem Hamiltonian encodes a solution to the problem. When the beginning state has a nonzero overlap with the final state, again if the parameter n within the special interpolating paths tends to infinity, it may give ones the counterintuitive impression that the adiabatic evolution could be considerably faster than the usual simple models of adiabatic evolution, even possible with constant time complexity. However, the fact is that as in the usual case, the quadratic speedup is the quantum algorithmic performance limit for which this kind of interpolating functions can provide for the adiabatic evolution. We also expose other easily made mistakes which may lead to draw the wrong conclusions about the validity of the adiabatic search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454(1969), 339–354 (1998)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Proceedings, pp. 124–134. IEEE (1994)

    Google Scholar 

  4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  5. Farhi, E., Goldstone, J., Gutmann, S., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  Google Scholar 

  6. Hen, I., Young, A.P.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84(6), 061152 (2011)

    Article  Google Scholar 

  7. Dickson, N.G., Amin, M.H.S.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106(5), 050502 (2011)

    Article  Google Scholar 

  8. Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. 107(28), 12446–12450 (2010)

    Article  Google Scholar 

  9. Garnerone, S., Zanardi, P., Lidar, D.A.: Adiabatic quantum algorithm for search engine ranking. Phys. Rev. Lett. 108(23), 230506 (2012)

    Article  Google Scholar 

  10. Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108(1), 010501 (2012)

    Article  Google Scholar 

  11. Somma, R.D., Nagaj, D., Kieferová, M.: Quantum speedup by quantum annealing. Phys. Rev. Lett. 109(5), 050501 (2012)

    Article  Google Scholar 

  12. Aharonov, D., van Dam, W., Kempe, J., et al.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755–787 (2008)

    Article  MathSciNet  Google Scholar 

  13. Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99(7), 070502 (2007)

    Article  Google Scholar 

  14. Messiah, A.: Quantum Mechanics. Dover, New York (1999)

    MATH  Google Scholar 

  15. Tong, D.M., Singh, K., Kwek, L.C., Oh, C.H.: Sufficiency criterion for the validity of the adiabatic approximation. Phys. Rev. Lett. 98(15), 150402 (2007)

    Article  Google Scholar 

  16. Farhi, E., Goldstone, J., Siper, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106

  17. Hen, I., Young, A.P.: Solving the graph-isomorphism problem with a quantum annealer. Phys. Rev. A 86(4), 042310 (2012)

    Article  Google Scholar 

  18. Gaitan, F., Clark, L.: Graph isomorphism and adiabatic quantum computing. Phys. Rev. A 89(2), 022342 (2014)

    Article  Google Scholar 

  19. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)

    Article  Google Scholar 

  20. Zhang, D.J., Yu, X.D., Tong, D.M.: Theorem on the existence of a nonzero energy gap in adiabatic quantum computation. Phys. Rev. A 90(4), 042321 (2014)

    Article  Google Scholar 

  21. Sun, J., Lu, S.F., Braunstein, S.L.: On models of nonlinear evolution paths in adiabatic quantum algorithms. Commun. Theor. Phys. 59(1), 22–26 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work are supported by the Natural Science Foundation of China under Grant No. 61402188, the Natural Science Foundation of Hubei Province of China under Grant No. 2016CFB541, the Applied Basic Research Program of Wuhan Science and Technology Bureau of China under Grant No. 2016010101010003 and the Science and Technology Program of Shenzhen of China under Grant No. JCYJ20170307160458368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songfeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Lu, S., Gao, C. (2019). Quantum Adiabatic Evolution with a Special Kind of Interpolating Paths. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication Networks. FICC 2018. Advances in Intelligent Systems and Computing, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-030-03405-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03405-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03404-7

  • Online ISBN: 978-3-030-03405-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics