Skip to main content

Dynamic Response of Levitation Force to Magnetic Field Fluctuation for High Temperature Superconducting Maglev System

  • Conference paper
  • First Online:
Advances in Smart Vehicular Technology, Transportation, Communication and Applications (VTCA 2018)

Abstract

Dynamic response of high temperature superconductor (HTS) to inhomogeneous distribution of magnetic field for permanent magnetic guideway (PMG), as well as to perturbations from the magnetic field of the PMG partially covered by iron sheet, are investigated. Decay of levitation force is observed caused by AC magnetic field. Furthermore, resonant effect at 180 Hz is obtained caused by inhomogeneous distribution of magnetic field of permanent magnet guideway. Otherwise, electromagnetic oscillations caused by abruptly decrease of magnetic field are also observed. These are perhaps related to complicated electromagnetic interaction inside HTS bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S.Y., et al.: Man-loading high-temperature superconducting Maglev test vehicle. IEEE Trans. Appl. Supercond. 13(2), 2134–2137 (2003)

    Article  Google Scholar 

  2. Kusada, S., et al.: The project overview of the HTS magnet for superconducting Maglev. IEEE Trans. Appl. Supercond. 17(2), 2111–2116 (2007)

    Article  Google Scholar 

  3. Yang, W.J., Qiu, M., Liu, Y., Wen, Z., Duan, Y., Chen, X.D.: Levitation characteristics in an HTS Maglev launch assist test vehicle. Supercond. Sci. Technol. 20, 281–286 (2007)

    Article  Google Scholar 

  4. Beyer, C., et al.: Guideway and turnout switch for the SupraTrans project. J. Phys. 4, 991–994 (2006)

    Google Scholar 

  5. Wang, J.S., et al.: Recent development of high temperature superconducting Maglev system in China. IEEE Trans. Appl. Supercond. 19(3), 2142–2147 (2009)

    Article  Google Scholar 

  6. Guo, F., et al.: Structural parameter optimization design for Halbach permanent Maglev rail. Physica C 470(3), 1787–1790 (2010)

    Article  Google Scholar 

  7. Ma, K.B., McMichael, C.K., Lamb, M.A., Chu, W.K.: Application of high temperature superconductors on levitation bearings, torque transmissions and vibration dampers. IEEE Trans. Appl. Supercond. 3(1), 388 (1993)

    Article  Google Scholar 

  8. Terentiev, A.N., Kuznetsov, A.A.: Drift of levitated YBCO superconductor induced by both a variable magnetic-field and a vibration. Phys. C 195(1–2), 41 (1992)

    Article  Google Scholar 

  9. Terentiev, A.N., Lee, H.J., Kim, C.J., Hong, G.W.: Identification of magnet and superconductor contributions to the ac loss in a magnet-superconductor levitation system. Physica C 290(3–4), 291 (1997)

    Article  Google Scholar 

  10. Lei, W.Y., Qian, N., Zheng, J., Jin, L.W., Zhang, Y., Deng, Z.G.: Dynamic motion modes of high temperature superconducting Maglev on a 45-m long ring test line. Int. J. Mod. Phys. B 31(25), 1745021 (2017)

    Article  Google Scholar 

  11. Wang, B., Zheng, J., Che, T., Zheng, B.T., Si, S.S., Deng, Z.G.: Dynamic response characteristics of high temperature superconducting Maglev systems: comparison between Halbach-type and normal permanent magnet guideways. Physica C 519, 147–152 (2015)

    Article  Google Scholar 

  12. Zhao, L., Deng, J., Li, L., Ning Feng, P., Wei, W.L., Jiang, J., Wang, X., Zhang, Y., Zhao, Y.: The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk Maglev system. Physica C 547, 41–45 (2018)

    Article  Google Scholar 

  13. Chang, P.-Z.: Mechanics of superconducting magnetic bearing. Ph.D. thesis, Cornell University (1991)

    Google Scholar 

  14. Teshima, H., Tanaka, M., Miyamoto, K., Nohguchi, K., Hinata, K.: Vibrational properties in superconducting levitation using melt-processed YBaCuO bulk superconductors. Physica C 256, 142–148 (1996)

    Article  Google Scholar 

  15. Qiu, M., Huo, H.K., Xu, Z., et al.: Electromagnetic phenomena in HTS bulk subjected to a rotating field. IEEE Trans. Appl. Supercond. 14(2), 1898–1901 (2004)

    Article  Google Scholar 

  16. Yang, Z.J., Hull, J.R.: Energy loss in superconducting bearing systems. IEEE Trans. Appl. Supercond. 7(2), 318–321 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the fund for the project support, including the Sichuan Applied Basic Research Project (No. 2018JY0003, 2017JY0057), the Program of International S&T Cooperation (Grant No. 2013DFA51050), the Fundamental Research Funds for the Central Universities under No. 2682016 ZDPY10 and Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, L., Deng, J., Li, L., Jiang, J., Zhang, Y., Zhao, Y. (2019). Dynamic Response of Levitation Force to Magnetic Field Fluctuation for High Temperature Superconducting Maglev System. In: Zhao, Y., Wu, TY., Chang, TH., Pan, JS., Jain, L. (eds) Advances in Smart Vehicular Technology, Transportation, Communication and Applications. VTCA 2018. Smart Innovation, Systems and Technologies, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-04585-2_9

Download citation

Publish with us

Policies and ethics