Skip to main content

MEG Signal Reconstruction via Low-Rank Matrix Recovery for Source Imaging in Simulations

  • Chapter
  • First Online:
Book cover Cognitive Internet of Things: Frameworks, Tools and Applications (ISAIR 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Included in the following conference series:

  • 809 Accesses

Abstract

Source imaging with magnetoencephalography (MEG) has obtained good spatial accuracy on the shallow sources, and has been successfully applied in the brain cognition and the diagnosis of brain disease. However, its utility with locating deep sources may be more challenging. In this study, a new source imaging method was proposed to find real brain activity on deep locations. A sensor array with MEG measurements including 306 channels was represented as a low-rank matrix plus sparse noises. The low-rank matrix was used to reconstruct the MEG signal and remove interference. The source model was estimated using the reconstructed MEG signal and minimum variance beamforming. Simulations with a realistic head model indicated that the proposed method was effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes, G.R., Hillebrand, A.: Statistical flattening of MEG beamformer images. Hum. Brain Mapp. 18, 1–12 (2003)

    Article  Google Scholar 

  2. Zumer, J.M., Attias, H.T., Sekihara, K., Nagarajan, S.S.: A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data. Neuroimage 37, 102–115 (2007)

    Article  Google Scholar 

  3. Baillet, S.: Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 20, 327–339 (2017)

    Article  Google Scholar 

  4. Nissen, I.A., Stam, C.J., Citroen, J., Reijneveldb, J.C., Hillebranda, A.: Preoperative evaluation using magnetoencephalography: experience in 382 epilepsy patients. Epilepsy Res. 124, 23–33 (2016)

    Article  Google Scholar 

  5. Wu, J.Y., et al.: Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 66, 1270–1272 (2006)

    Article  Google Scholar 

  6. Nissen, I.A., et al.: Identifying the epileptogenic zone in interictal resting-state MEG source-space networks. Epilepsia 58, 137–148 (2017)

    Article  Google Scholar 

  7. Mattout, J., Phillips, C., Penny, W.D., et al.: MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30, 753–767 (2006)

    Article  Google Scholar 

  8. Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. NeuroEng. Rehabil. 5, 25 (2008)

    Article  Google Scholar 

  9. Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. 5(4), 2315–2322 (2018)

    Article  Google Scholar 

  10. Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A.: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997)

    Article  Google Scholar 

  11. Oshino, S., Kato, A., Wakayama, A., et al.: Magnetoencephalographic analysis of cortical oscillatory activity in patients with brain tumors: synthetic aperture magnetometry (SAM) functional imaging of delta band activity. Neuroimage 34, 957–964 (2007)

    Article  Google Scholar 

  12. Mosher, J.C., Leahy, R.M.: Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng. 45, 1342–1354 (1998)

    Article  Google Scholar 

  13. Komssi, S., Huttunen, J., Aronen, H.J., et al.: EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1. Clin. Neurophysiol. 115, 534–542 (2004)

    Article  Google Scholar 

  14. Hillebrand, A., Singh, K.D., Holliday, I.E., Furlong, P.L., Barnes, G.R.: A new approach to neuroimaging with magnetoencephalography. Hum. Brain Mapp. 25, 199–211 (2005)

    Article  Google Scholar 

  15. Shigeto, H., Morioka, T., Hisada, K., Nishio, S., Ishibashi, H., Kira, D., Tobimatsu, S., Kato, M.: Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography. Neurol. Res. 24, 531–536 (2002)

    Article  Google Scholar 

  16. Lin, F.H., Witzel, T., Ahlfors, S.P., et al.: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31, 160–171 (2006)

    Article  Google Scholar 

  17. Chen, C.F., Wei, C.P., Wang, Y.C.F.: Low-rank matrix recovery with structural incoherence for robust face recognition. IEEE Conf. Comput. Vis. Pattern Recogn. CVPR, 2618–2625 (2012)

    Google Scholar 

  18. Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013)

    Article  Google Scholar 

  19. Shabalin, A.A., Nobel, A.B.: Reconstruction of a low-rank matrix in the presence of Gaussian noise. J. Multivar. Anal. 118, 67–76 (2013)

    Article  MathSciNet  Google Scholar 

  20. Zhang, H., He, W., Zhang, L., et al.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52, 4729–4743 (2014)

    Article  Google Scholar 

  21. Candès, E.J., Li, X., Ma, Y., et al.: Robust principal component analysis? J. ACM 58, 11 (2011)

    Article  MathSciNet  Google Scholar 

  22. Diwakar, M., Huang, M.X., Srinivasan, R., Harrington, D.L., Robb, A., Angeles, A., Muzzatti, L., Pakdaman, R., Song, T., Theilmann, R.J., et al.: Dual-core beamformer for obtaining highly correlated neuronal networks in MEG. Neuroimage 54, 253–263 (2011)

    Article  Google Scholar 

  23. Zhang, J., Liu, C.: On linearly constrained minimum variance beamforming. J. Mach. Learn. Res. 16, 2099–2145 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Brookes, M.J., Stevenson, C.M., Barnes, G.R., et al.: Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34, 1454–1465 (2007)

    Article  Google Scholar 

  25. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 2080–2088 (2009)

    Google Scholar 

  26. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23, 368–375 (2018)

    Article  Google Scholar 

  27. Nolte, G.: The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 48, 3637 (2003)

    Article  Google Scholar 

  28. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. 14, 239–256 (1992)

    Article  Google Scholar 

  29. Groß, J., Ioannides, A.A.: Linear transformations of data space in MEG. Phys. Med. Biol. 44, 2081 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Number: 2016YFF0201002), the National Natural Science Foundation of China (Grant Numbers: 61301005, 61572055), the Beihang University Hefei Innovation Research Institute, Project of ‘The Thousand Talents Plan’ for Young Professionals, and ‘The Thousand Talents Plan’ Workstation between Beihang University and Jiangsu Yuwell Medical Equipment and Supply Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Y., Zhang, J. (2020). MEG Signal Reconstruction via Low-Rank Matrix Recovery for Source Imaging in Simulations. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_1

Download citation

Publish with us

Policies and ethics