Skip to main content

Nuclear Norm Regularized Structural Orthogonal Procrustes Regression for Face Hallucination with Pose

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Abstract

In real applications, the observed low-resolution (LR) face images usually have pose variations. Conventional learning based methods ignore these variations, thus the learned representations are not beneficial for the following reconstruction. In this paper, we propose a nuclear norm regularized structural orthogonal Procrustes regression (N2SOPR) method to learn pose-robust feature representations for efficient face hallucination. The orthogonal Procrustes regression (OPR) seeks an optimal transformation between two images to correct the pose from one to the other. Additionally, our N2SOPR uses the nuclear norm constraint on the error term to keep image’s structural information. A low-rank constraint on the representation coefficients is imposed to adaptively select the training samples that belong to the same subspace as the inputs. Moreover, a locality constraint is also enforced to preserve the locality and the sparsity simultaneously. Experimental results on standard face hallucination databases indicate that our proposed method can produce more reasonable near frontal face images for recognition purpose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Park, S.C., Min, K.P., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  2. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23, 368–375 (2018)

    Article  Google Scholar 

  3. Li, Y., Lu, H., Li, K., Kim, H., Serikawa, S.: Non-uniform de-scattering and de-blurring of underwater images. Mob. Netw. Appl. 23, 352–362 (2018)

    Article  Google Scholar 

  4. Lu, H., Li, Y., Uemura, T., Kim, H., Serikawa, S.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Gener. Comput. Syst. 82, 142–148 (2018)

    Article  Google Scholar 

  5. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. Proceedings of the Computer Vision & Pattern Recognition, vol. 1, pp. 275–282, Jan 2004

    Google Scholar 

  6. Ma, X., Zhang, J., Qi, C.: Hallucinating face by position-patch. Pattern Recogn. 43(6), 2224–2236 (2010)

    Article  Google Scholar 

  7. Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Google Scholar 

  8. Jiang, J., Hu, R., Wang, Z., Han, Z.: Noise robust face hallucination via locality constrained representation. IEEE Trans. Multimed. 16(5), 1268–1281 (2014)

    Article  Google Scholar 

  9. Pang, H., Gao, G., Jing, X., et al.: Kernel locality-constrained adaptive iterative neighbor embedding for face hallucination. In: IEEE International Conference on Wireless Communications & Signal Processing, pp. 1–5 (2016)

    Google Scholar 

  10. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  11. Gao, G., Pang, H., Wang, C., et al.: Locality-constrained iterative matrix regression for robust face hallucination. In: International Conference on Neural Information Processing, pp. 613–621 (2017)

    Google Scholar 

  12. Jung, C., Jiao, L., Liu, B., et al.: Position-Patch Based Face Hallucination Using Convex Optimization. IEEE Signal Process. Lett. 18(6), 367–370 (2011)

    Article  Google Scholar 

  13. Rohit, U., Abdu, R.V., George, S.N.: A robust face hallucination technique based on adaptive learning method. Multimed. Tools Appl. 76, 1–21 (2017)

    Article  Google Scholar 

  14. Lu, T., Pan, L., Wang, H., Zhang, Y., Wang, B., et al.: Face hallucination using deep collaborative representation for local and non-local patches. In: IEEE International Symposium on Circuits & Systems, pp. 1–4 (2017)

    Google Scholar 

  15. Shi, J., Qi, C.: Face hallucination based on PCA dictionary pairs. In: IEEE International Conference on Image Processing, pp. 933–937 (2014)

    Google Scholar 

  16. Li, Y., Cai, C., Qiu, G., Lam, K.M.: Face hallucination based on sparse local-pixel structure. Pattern Recogn. 47(3), 1261–1270 (2014)

    Article  Google Scholar 

  17. Wang, Z., Jiang, J., Xiong, Z., Hu, R., Shao, Z.: Face hallucination via weighted sparse representation. IEEE Int. Conf. Acoust. 32(3), 2198–2201 (2013)

    Google Scholar 

  18. Jiang, J., Hu, R., Wang, Z., Xiong, Z.: Support-driven sparse coding for face hallucination. In: IEEE International Symposium on Circuits & Systems, pp. 2980–2983 (2013)

    Google Scholar 

  19. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Eprint Arxiv (2010)

    Google Scholar 

  20. Yin, W.: The alternating direction method of multipliers. In: Imaging Science a Workshop in Honor of Stanley Osher (2012)

    Google Scholar 

  21. Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems. IEEE Trans. Autom. Control 60(3), 644–658 (2013)

    Article  MathSciNet  Google Scholar 

  22. Cai, J.F., Cand, E.J.S., Shen, Z.: A singular value thresholding algorithm for matrix completion. Siam J. Optim. 20(4), 1956–1982 (2008)

    Article  MathSciNet  Google Scholar 

  23. Phillips, P.J., Wechsler, H., Huang, J., et al.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  24. Dong, C., Loy, C.C., He, K., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  25. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: International Conference on Pattern Recognition, pp. 2366–2369 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant nos. 61502245, 61503195, 61772568, the Natural Science Foundation of Jiangsu Province under Grant no. BK20150849, Research Fund of SKL of Ocean Engineering in Shanghai Jiaotong University (1315;1510), Research Fund of SKL of Marine Geology in Tongji University (MGK1608), Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) (No. MJUKF201717). Guangwei Gao is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, D., Gao, G., Gao, H., Lu, H. (2020). Nuclear Norm Regularized Structural Orthogonal Procrustes Regression for Face Hallucination with Pose. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_16

Download citation

Publish with us

Policies and ethics