Skip to main content

Adaptive Block Compressive Sensing for Noisy Images

  • Chapter
  • First Online:
Book cover Cognitive Internet of Things: Frameworks, Tools and Applications (ISAIR 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Included in the following conference series:

Abstract

This paper develops a novel adaptive gradient-based block compressive sensing (AGbBCS_SP) methodology for noisy image compression and reconstruction. The AGbBCS_SP approach splits an image into blocks by maximizing their sparsity, and reconstructs images by solving a convex optimization problem. The main contribution is to provide an adaptive method for block shape selection, improving noisy image reconstruction performance. Experimental results with different image sets indicate that our AGbBCS_SP method is able to achieve better performance, in terms of peak signal to noise ratio (PSNR) and computational cost, than several classical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  2. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. Signal Process. Lett. IEEE 14(10), 707–710 (2007)

    Article  Google Scholar 

  5. Cui, H., Zhang, S., Gan, X., Shen, M., Wang, X., Tian, X.: Information recovery via block compressed sensing in wireless sensor networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6 (2016)

    Google Scholar 

  6. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  7. Davenport, M.A., Needell, D., Wakin, M.B.: Signal space cosamp for sparse recovery with redundant dictionaries. IEEE Trans. Inf. Theory 59(10), 6820–6829 (2013)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Eldar, Y.C., Kuppinger, P., BÃűcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)

    Google Scholar 

  10. Fowler, J.E., Mun, S., Tramel, E.W.: Multiscale block compressed sensing with smoothed projected landweber reconstruction. In: Signal Processing Conference, 2011 European, pp. 564–568 (2015)

    Google Scholar 

  11. Gan, L.: Block compressed sensing of natural images. In: 2007 15th International Conference on Digital Signal Processing, pp. 403–406. IEEE (2007)

    Google Scholar 

  12. Huggins, P.S., Zucker, S.W.: Greedy basis pursuit. IEEE Trans. Signal Process. 55(7), 3760–3772 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hurley, N., Rickard, S.: Comparing measures of sparsity. IEEE Trans. Inf. Theory 55(10), 4723–4741 (2009)

    Article  MathSciNet  Google Scholar 

  14. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Computer Vision-ECCV 2008, pp. 304–317 (2008)

    Google Scholar 

  15. Lu, H., Li, B., Zhu, J., Li, Y., Li, Y., Xu, X., He, L., Li, X., Li, J., Serikawa, S.: Wound intensity correction and segmentation with convolutional neural networks. Concurr. Comput.: Pract. Exp. 29(6), e3927 (2017)

    Article  Google Scholar 

  16. Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. (2017)

    Google Scholar 

  17. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)

    Article  Google Scholar 

  18. Lu, H., Li, Y., Uemura, T., Kim, H., Serikawa, S.: Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur. Gener. Comput. Syst. (2018)

    Google Scholar 

  19. Mun, S., Fowler, J.E.: Block compressed sensing of images using directional transforms. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3021–3024. IEEE (2009)

    Google Scholar 

  20. Needell, D., Tropp, J.A.: Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  21. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized bregman iteration for compressive sensing and sparse denoising. arXiv preprint arXiv:1104.0262 (2011)

    Google Scholar 

  22. Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M., Lee, S.: Compressive sensing: from theory to applications, a survey. J. Commun. Netw. 15(5), 443–456 (2013)

    Article  Google Scholar 

  23. Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)

    Article  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  25. Unde, A.S., Deepthi, P.: Block compressive sensing: individual and joint reconstruction of correlated images. J. Vis. Commun. Image Represent. 44, 187–197 (2017)

    Article  Google Scholar 

  26. Zhao, C., Ma, S., Zhang, J., Xiong, R., Gao, W.: Video compressive sensing reconstruction via reweighted residual sparsity. IEEE Trans. Circuits Syst. Video Technol. 27(6), 1182–1195 (2017)

    Article  Google Scholar 

  27. Zhao, H., Wang, Y., Qiao, Z., Fu, B.: Solder joint imagery compressing and recovery based on compressive sensing. Solder. Surf. Mt. Technol. 26(3), 129–138 (2014)

    Article  Google Scholar 

  28. Zhao, H., Zhao, H., Chen, J., Chen, J., Xu, S., Xu, S., Wang, Y., Wang, Y., Qiao, Z., Qiao, Z.: Compressive sensing for noisy solder joint imagery based on convex optimization. Solder. Surf. Mt. Technol. 28(2), 114–122 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61733004, 61503128, 61602402), the Science and Technology Plan Project of Hunan Province (2016TP102), Scientific Research Fund of Hunan Provincial Education Department (16C0226), and Hunan Provincial Natural Science Foundation (2017JJ4001). We would like to thank NVIDIA for the GPU donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-huang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Hh., Rosin, P.L., Lai, YK., Zheng, Jh., Wang, Yn. (2020). Adaptive Block Compressive Sensing for Noisy Images. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_38

Download citation

Publish with us

Policies and ethics