Skip to main content

A Skin Lesion Segmentation Method Based on Saliency and Adaptive Thresholding in Wavelet Domain

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Abstract

Segmentation is the essential requirement in automated computer-aided diagnosis (CAD) of skin diseases. In this paper, we propose an unsupervised skin lesion segmentation method to challenge the difficulties existing in the dermoscopy images such as low contrast, border indistinct, and skin lesion is close to the boundary. Our method combines the enhanced fusion saliency with adaptive thresholding based on wavelet transform to get the lesion regions. Firstly, the saliency map increases the contract of the skin lesion and healthy skin, and then an adaptive thresholding method based on wavelet transform is used to obtain more accurate lesion regions. Experiments on dermoscopy images demonstrate the effectiveness of the proposed method over several state-of-the-art methods in terms of quantitative results and visual effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Navarro, F., Escudero-Vinolo, M., Bescos, J.: Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE J. Biomed. Health Inform. (99), 1 (2018)

    Google Scholar 

  2. Stewart, B.W., Wild, C.P.: World Cancer Report 2014, p. 953. World Health Organization (2014)

    Google Scholar 

  3. Jahanifar, M., Tajeddin, N.Z., Asl, B.M., Gooya, A., et al.: Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE J. Biomed. Health Inform. (2018)

    Google Scholar 

  4. Silveira, M., Nascimento, J.C., Marques, J.S., et al.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel. Top. Signal Process. 3(1), 35–45 (2009)

    Article  Google Scholar 

  5. Ahn, E., Kim, J., Bi, L., et al.: Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J. Biomed. Health Inform. 21(6), 1685–1693 (2017)

    Article  Google Scholar 

  6. Pathan, S., Prabhu, K.G., Siddalingaswamy, P.C.: Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed. Signal Process. Control 39, 237–262 (2018)

    Article  Google Scholar 

  7. Lu, H., Li, B., Zhu, J., et al.: Wound intensity correction and segmentation with convolutional neural networks. Concurr. Comput. Pract. Exp. 29(6), e3927 (2017)

    Article  Google Scholar 

  8. Xu, X., He, L., Lu, H., et al.: Deep adversarial metric learning for cross-modal retrieval. In: World Wide Web, pp. 1–16 (2018)

    Google Scholar 

  9. Yüksel, M.E., Borlu, M.: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 17(4), 976–982 (2009)

    Article  Google Scholar 

  10. Emre Celebi, M., Kingravi, H.A., Iyatomi, H., et al.: Border detection in dermoscopy images using statistical region merging. Ski. Res. Technol. 14(3), 347–353 (2008)

    Article  Google Scholar 

  11. Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)

    Article  Google Scholar 

  12. Kasmi, R., Mokrani, K., Rader, R.K., et al.: Biologically inspired skin lesion segmentation using a geodesic active contour technique. Ski. Res. Technol. 22(2), 208–222 (2016)

    Article  Google Scholar 

  13. Fan, H., Xie, F., Li, Y., et al.: Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Comput. Biol. Med. 85, 75–85 (2017)

    Article  Google Scholar 

  14. Cheng, M.M., Mitra, N.J., Huang, X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  15. Lu, H., Li, Y., Mu, S., et al.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J. (2017)

    Google Scholar 

  16. Lu, H., Li, Y., Chen, M., et al.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)

    Article  Google Scholar 

  17. Zhu, W., Liang, S., Wei, Y., et al.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

    Google Scholar 

  18. Lee, T., Ng, V., Gallagher, R., et al.: Dullrazor®: a software approach to hair removal from images. Comput. Biol. Med. 27(6), 533–543 (1997)

    Article  Google Scholar 

  19. Ahn, E., Bi, L., Jung, Y.H., et al.: Automated saliency-based lesion segmentation in dermoscopic images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3009–3012. IEEE (2015)

    Google Scholar 

  20. Zhang, X.P., Desai, M.D.: Segmentation of bright targets using wavelets and adaptive thresholding. IEEE Trans. Image Process. 10(7), 1020–1030 (2001)

    Article  Google Scholar 

  21. Hu, K., Gao, X., Li, F.: Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms. IEEE Trans. Instrum. Meas. 60(2), 462–472 (2011)

    Article  Google Scholar 

  22. Flores, E., Scharcanski, J.: Segmentation of melanocytic skin lesions using feature learning and dictionaries. Expert Syst. Appl. 56, 300–309 (2016)

    Article  Google Scholar 

  23. Mendonça, T., Ferreira, P.M., Marques, J.S., et al.: PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013)

    Google Scholar 

  24. Abuzaghleh, O., Barkana, B.D., Faezipour, M.: Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J. Transl. Eng. Health Med. 3, 1–12 (2015)

    Article  Google Scholar 

  25. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants no. 61802328 and 61771415, and the Cernet Innovation Project under Grant no. NGII20170702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, K. et al. (2020). A Skin Lesion Segmentation Method Based on Saliency and Adaptive Thresholding in Wavelet Domain. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_43

Download citation

Publish with us

Policies and ethics