Skip to main content

Compressive Sensing-Based Optimal Design of an Emerging Optical Imager

  • Chapter
  • First Online:
Cognitive Internet of Things: Frameworks, Tools and Applications (ISAIR 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 810))

Included in the following conference series:

  • 820 Accesses

Abstract

The emerging optical imager can greatly reduce system weight and size compared to conventional telescopes. The compressive sensing (CS) theory demonstrates that incomplete and noisy measurements may actually suffice for accurate reconstruction of compressible or sparse signals. In this paper, we propose an optimized design of the emerging optical imager based on compressive sensing theory. It simplifies data acquisition structure and reduces data transmission burden. moreover, the system robustness is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://chandra.harvard.edu/.

References

  1. Kendrick, R.L., Duncan, A., Ogden, C., Wilm, J., Stubbs, D.M., Thurman, S.T., Su, T., Scott, R.P., Yoo, S.: Flat-panel space-based space surveillance sensor. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (2013)

    Google Scholar 

  2. Fontaine, N.K., Scott, R.P., Zhou, L., Soares, F.M., Heritage, J., Yoo, S.: Real-time full-field arbitrary optical waveform measurement. Nat. Photonics 4(4), 248–254 (2010)

    Article  Google Scholar 

  3. Duncan, A., Kendrick, R., Thurman, S., Wuchenich, D., Scott, R.P., Yoo, S., Su, T., Yu, R., Ogden, C., Proiett, R.: Spider: next generation chip scale imaging sensor. In: Advanced Maui Optical and Space Surveillance Technologies Conference (2015)

    Google Scholar 

  4. Scott, R.P., Su, T., Ogden, C., Thurman, S.T., Kendrick, R.L., Duncan, A., Yu, R., Yoo, S.: Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging. In: 2014 IEEE Photonics Conference (IPC), pp. 1–2. IEEE (2014)

    Google Scholar 

  5. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  6. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  7. Pearson, T., Readhead, A.: Image formation by self-calibration in radio astronomy. Annu. Rev. Astron. Astrophys. 22(1), 97–130 (1984)

    Article  Google Scholar 

  8. Haniff, C.: An introduction to the theory of interferometry. New Astron. Rev. 51(8), 565–575 (2007)

    Article  Google Scholar 

  9. Goodman, J.W.: Statistical Optics. Wiley (2000)

    Google Scholar 

  10. Guyon, O.: Wide field interferometric imaging with single-mode fibers. Astron. Astrophys. 387(1), 366–378 (2002)

    Article  Google Scholar 

  11. Zimmermann, L., Voigt, K., Winzer, G., Petermann, K., Weinert, C.M.: \(c\)-band optical 90\(^{\circ }\)-hybrids based on silicon-on-insulator 4 \(\times \) 4 waveguide couplers. IEEE Photonics Technol. Lett. 21(3), 143–145 (2009)

    Google Scholar 

  12. Hashimoto, T., Ogawa, I.: Optical hybrid integration using planar lightwave circuit platform. In: Proceedings of the SPIE, vol. 4652, pp. 58–67 (2002)

    Google Scholar 

  13. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  14. Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 1433–1452, Madrid, Spain (2006)

    Google Scholar 

  15. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  16. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Google Scholar 

  17. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  18. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9(3), 317–334 (2009)

    Article  MathSciNet  Google Scholar 

  19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  20. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  21. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  22. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  23. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  24. Candes, E., Romberg, J.: l1-magic: recovery of sparse signals via convex programming, vol. 4, p. 14 (2005). www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by China Lunar Exploration Project (CLEP) and Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongxi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, G., Wen, D., Song, Z., Li, Z., Zhang, W., Wei, X. (2020). Compressive Sensing-Based Optimal Design of an Emerging Optical Imager. In: Lu, H. (eds) Cognitive Internet of Things: Frameworks, Tools and Applications. ISAIR 2018. Studies in Computational Intelligence, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-030-04946-1_8

Download citation

Publish with us

Policies and ethics